

## Nutritional Intervention for Women's Hormonal Health: From PCOS to Menopause

Maheen Khalid<sup>1\*</sup>, Aaraf Waris<sup>2</sup>, Muhammad Umaid<sup>3</sup>, Saim Riaz<sup>1</sup> and Aqsa Naeem Chawla<sup>3</sup>

1. National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
2. Department of Dietetics and Nutritional Sciences, The University of Faisalabad, Faisalabad, Pakistan.
3. Faculty of Eastern Medicine, Hamdard University Karachi, Pakistan

\*Corresponding Author: [maheen.khalid85@gmail.com](mailto:maheen.khalid85@gmail.com)

### ABSTRACT

Menopause and polycystic ovarian syndrome (PCOS) represent two hormonally driven conditions in women that respond well to targeted nutritional strategies. Evidence shows that micronutrients and bioactive compounds, including vitamin D, inositol, and marine-derived omega-3 fatty acids, may reduce systemic inflammation, insulin resistance, and selected hormonal imbalances, although outcomes vary across populations. During menopause, risks of obesity, metabolic syndrome, cardiovascular disease, and osteoporosis increase, making nutrition critical for long-term health and daily functioning. Diets rich in phytoestrogens, particularly soy isoflavones, as well as whole-food and plant-based dietary patterns, can alleviate vasomotor symptoms and improve quality of life. In PCOS, nutritional management focuses on weight control, low-glycemic-load carbohydrates, and anti-inflammatory dietary approaches to optimize metabolic and endocrine parameters. Overall, individualized, evidence-based dietary interventions across life stages are essential for supporting hormonal balance, reducing chronic disease risk, and enhancing overall well-being in women experiencing PCOS and menopause.

**Keywords:** Women's hormonal health, polycystic ovary syndrome (PCOS), Menopause, Nutritional intervention, Dietary patterns, Mediterranean diet

**To cite this article:** Khalid M, A Waris, M Umaid, S Riaz & AN Chawla. Nutritional Intervention for Women's Hormonal Health: From PCOS to Menopause. Biological Times. 2025. December 4(12): 12-14.

### Introduction

The hormonal health of women is the result of a very complex interaction of lifestyle, environmental, and genetic factors, the nutritional factor being one of the most notable modulators in life. The menopausal transition and hormonal disorders such as Polycystic Ovary Syndrome (PCOS) are discrete periods of endocrinological change with a significant effect on psychological, reproductive and metabolic well-being. The features of PCOS with an incidence of about 6-15 percent among women worldwide are insulin resistance, hyperandrogenism, and oligo-anovulation. Such conditions make people prone to infertility, cardio metabolic, and mood disorders. On the contrary, the natural termination of reproductive activity is menopause, accompanied by an essential reduction in estrogen levels, which leads to the development of vasomotor symptoms, increased susceptibility of the cardiovascular system, and bone deterioration [1]. It mostly depends on dietary patterns to modulate these hormonal transitions. As an illustration, the adherence to the Mediterranean diet, characterized by consuming moderate amounts of fish, poultry, and dairy and no fewer than three portions of vegetables, fruits, legumes, nuts, whole grains, and olive oil has been strictly associated with metabolic well-being and reduced the risk of non-communicable diseases related to age [2]. Some of the targeted nutrients that have proved beneficial in the insulin sensitivity improvement, inflammation reduction, ovarian functionality, and alleviation of the symptoms of menopause include vitamin D, inositol, omega-3 fatty acids, and phytoestrogens [3].

The female endocrine system works by the intricate balance of the sex hormones (androgens, progesterone and estrogen) and the metabolic hormones (cortisol and insulin). Disruptions on this interconnected network cause a variety of clinical presentations, encompassing the metabolic alterations that accompany menopause with the dysfunction of reproductive functions that accompanies the development of PCOS. Progesterone enhances neuropsychological stability and reproductive physiology whereas estrogen is critical in cardiovascular protection and bone mineralization as well as cognitive maintenance [4]. In PCOS pathophysiology, especially insulin, which is an essential hormone in the metabolism, provides a crucial relationship between diet and hormonal regulation.

Despite the importance of pharmaceutical techniques still, nutrition is gaining recognition as the basis of treating and preventing hormonal diseases. The choice of foods influences insulin actions regulates chronic inflammation and provides the necessary building blocks on which hormones can be synthesized and breakdown. Here, the article summarizes the recent findings of 2020-2024, and the role of nutrition is defined as an imperative principle of uniquely integrative hormonal care. Besides talking about more general-related diet models that are relevant to the endocrine health of women throughout their lives, it provides an up-to-date, evidence-

based review of nutritional interventions to manage PCOS and health during menopause.

#### The Reproductive Years & Polycystic Ovary Syndrome (PCOS):

In accordance with the latest international recommendations, PCOS remains the most prevalent endocrine female condition of reproductive age, with a prevalence rate of 10-13% worldwide. It is diagnosed as polycystic ovarian morphology, ovulatory dysfunction, and hyperandrogenism. The major metabolic driver, insulin resistance, is also prevalent among the majority of the afflicted individuals irrespective of the BMI [5].

#### The Contemporary Perception of the Insulin-Androgen Axis:

Insulin resistance causes compensatory hyperinsulinemia, which has two adverse impacts. To begin with, it makes the ovarian theca cells produce testosterone in excess [6]. Second, it elevates biologically active levels of free testosterone by reducing the synthesis of Sex Hormone-Binding Globulin (SHBG) by the liver which worsens hirsutism, acne, and anovulation.

#### Basic Nutritional Interventions with PCOS:

The primary outcomes of modern nutritional intervention on PCOS are the improvement of insulin sensitivity, the correction of micro-nutrient deficiencies, and more changes in gut microbiota.

##### 1. The Anti-Inflammatory & Low-Glycemic Load Diet:

The initial treatment measure is a diet, which puts priority on food that has low glycemic index (GI) and low glycemic load (GL) foods.

- **Emphasize:** Entire grains such as quinoa and oats, legumes, low-glycemic fruit (apples, berries), as well as no-starch vegetables. These foods directly target the underlying pathology as they eliminate any sharp rises in insulin and blood sugar levels [7].
- **Limit:** Refined carbohydrates, sugar-sweetened beverages and ultra-processed foods are good inducers of insulin resistance and inflammation.

##### 2. Sound Macro nutritional Distribution:

Although certain notions tend to be overall beneficial, recent studies propose the individualized attitude towards the macronutrient proportions.

- **Protein Intake:** 2530g of high-quality protein per meal enhances the body composition, raises satiety, and significantly decreases postprandial glycemic excursions [8]. The sources include lean poultry, fish, eggs, tofu, and lentils.

• **The Quality of Fats Matters:** Replacement of saturated fats with monounsaturated (MUFA) and omega-3 polyunsaturated (PUFA) fat improves insulin receptivity and reduces inflammatory biomarkers [9]. Top priority should be given to fatty fish, avocados, nuts, and seeds and extra-virgin olive oil.

- **"Pairing":** It is a helpful clinical intervention of carbohydrates combined with protein, fat, and fiber. Eating an apple (carb) plus a handful of almonds

(fat/protein) will decrease the effect of glucose and slow down digestion, as an example.

### 3. Evidence-Based Micronutrients: Beneficial Foods:

**Inositol:** The meta-analysis studies have demonstrated the applicability of myo-inositol (MI) and D-chiro-inositol (DCI), at least in the physiological proportion of 40:1. They reduce the level of testosterone, recover ovulatory activity, and highly increase the level of insulin sensitivity as second messengers and insulin mimetic [3].

**Vitamin D:** Vitamin D deficiency is now considered one of the significant co-morbidity factors in PCOS because it is highly prevalent. Deficiency correction is linked to improvement in lipid profiles, insulin sensitivity, and menstrual regularity [10].

**Spearmint Tea:** Spearmint tea is also an anti-androgenic, as per recent randomized controlled trials, reducing the level of free testosterone and positively impacting the hirsutism scores during an 812 weeks period [11].

**Cinnamon:** Current studies have shown that *Cinnamomum cassia* supplementation alters insulin sensitivity and fasting glucose in PCOS women, which is likely to be related to enhancing insulin receptor signaling [12].

### 1. The Gut-Hormone Axis in PCOS:

The gut microbiota is a subject of a new research. The gut dysbiosis peculiar to women with PCOS might contribute to inflammation and insulin resistance [13]. Some of the dietary approaches in the promotion of a healthy microbiome include:

- Prebiotics:** Consuming a diversity of fibrous food like Jerusalem artichokes, garlic, onions, leeks and asparagus.

**Probiotics and Symbiotics:** Recent research indicates that some types of probiotics and symbiotics (probiotic + prebiotic) can be used to treat female PCOS patients to lower testosterone and glucose metabolism [14].

**Table 1: Summary of Key Nutritional Interventions for PCOS**

| Goal                                   | Dietary Strategy            | Key Foods & Nutrients                                  | Rationale & Recent Evidence                                                        | References |
|----------------------------------------|-----------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|------------|
| Improve Insulin Sensitivity            | Low Glycemic Load Diet      | Non-starchy vegetables, berries, legumes, quinoa.      | Prevents rapid spikes in glucose/insulin.                                          | [7]        |
|                                        | Balanced Macronutrients     | Lean protein, MUFAs/PUFAs, fiber.                      | Blunts glycemic response, improves body composition.                               | [8]        |
|                                        | Targeted Supplementation    | Inositol (40:1), Vitamin D, Cinnamon.                  | Acts as insulin sensitizers; corrects common deficiencies.                         | [10]       |
| Reduce Androgen Levels                 | Lower Insulin               | All strategies above.                                  | Hyperinsulinemia directly stimulates ovarian androgen production.                  | [6]        |
|                                        | Anti-androgenic Foods       | Spearmint tea, Flaxseeds.                              | Confirmed to reduce free testosterone in RCTs.                                     | [11]       |
| Combat Inflammation & Oxidative Stress | Increase Omega-3 Fats       | Fatty fish, walnuts, chia seeds.                       | Precursors to specialized pro-resolving mediators (SPMs) that quench inflammation. | [9]        |
|                                        | Antioxidant-Rich Diet       | Colorful fruits/vegetables, spices (turmeric, ginger). | Reduces oxidative stress, a key driver of PCOS pathogenesis.                       |            |
| Modulate Gut Microbiome                | Pre/Probiotics & Symbiotics | Garlic, onions, yogurt, kefir, kimchi.                 | Correcting dysbiosis improves metabolic and hormonal parameters.                   | [13,14]    |

### Premenopausal Transition:

The progestrone and estrogen changes introduce during the perimenopausal transition are unpredictable and may lead to disruptive symptoms such as mood swings and sleep problems, as well as vasomotor symptoms (VMS) [15]. This four to ten year period is essential to implement nutritional plans so as to bring the hormonal seesaw at par and mitigate risks in the long term.

### Basic Nutritional Interventions of Perimenopause:

**1. Enhancing Metabolic Stability:** When the estrogen deficiency begins, the insulin sensitivity begins to decrease and the tendency to develop metabolic syndrome and gain weight during midlife increases. At this age, metabolic flexibility should be held up following the principles of low-glycemic, high-fiber, and sufficient protein consumption.

**2. Encouragement of Endogenous Progesterone:** Progesterone is often the first hormone that decreases. Its production and equilibrium need a number of nutrients that are essential like **magnesium** that is required in hundreds of enzymatic processes including hormone production. It should also enhance the GABA activity to sleep better [16]. It can be found in dark chocolate, leafy greens, nuts, and seeds. Hormone synthesis and a state of neurotransmitter balance have cofactors (**zinc, and vitamin B6**).

### 3. The Modern Re-Evaluation of Phytoestrogens:

Soflavones (genistein, daidzein) are phytoestrogens that the recent studies have brought to light. They act as a **selective estrogen receptor modulator (SERM)** to the unstable hormonal condition of perimenopause [17].

- When endogenous estrogen levels are low, they may have a low estrogenic effect on tissues such as the heart and bones.
- When the estrogen levels are elevated, they can be anti-estrogenic to the tissues such as the breast. Intake of hot flushes is reduced and milder when an individual eats one to two servings of complete soy products (tofu, tempeh, and edamame) daily.

### Postmenopause and Long-Term Health:

No history of autonomy loss or instrumental prognosis. Hypoestrogenism is an irreversible state that is defined as the postmenstrual period in excess of 12 months. The impact of this hormonal change on long-term health results in a high risk of developing a number of chronic diseases.

### Key Health Concerns:

**Cardiovascular Disease (CVD):** Dysfunction of endothelium and damaging lipid transformation are the typical reasons of fatality among postmenopausal women [15].

**Osteoporosis & Sarcopenia:** It was stated that sarcopenia that is the loss of muscle mass and functions and osteoporosis that is the loss of bone

considerably can increase the risks of fractures and decreased quality of life [3].

**Central Adiposity:** This is one of the primary causes of metabolic malfunction, the loss of estrogen stimulates the transition towards visceral fat storage.

### Important Dietary Habits in Women after Menopause

**1. Bone Health: A Multi-Nutrient Approach:** This is because bone strength is based on the symphony of nutrients, and is not limited to calcium and vitamin D.

- Vitamin D:** Vitamin D and calcium remain to be the foundations. Goal 800-2000 IU of vitamin D and 1200 mg of calcium daily; the extension is often needed to achieve >30 ng/mL of serum 25(OH) D [18].

- Protein:** It is important to keep the muscles mass, which defines the strength of the bones, and the bone matrix itself through adequate protein intake ( $\geq 1.0$  12 g/kg/day) [19].

- Magnesium, Vitamin K2, and Potassium:** These are important cofactors in calcium regulation and bone mineralization. Vitamin K2 directs calcium to the bones and away from the arteries; dietary sources includes natto and fermented cheeses [20].

**2. The Protein Pacing as a Tactic to Combat Sarcopenia:** Anabolic resistance in old age requires more judicious protein consumption.

- Prescribe:** Consume 1.2–1.6 g of protein per kilogram of body weight per day, split into 30–40 g portions spread over three or four meals, for the best results in muscle protein synthesis. For this, high-leucine foods like whey protein, fish, and poultry work particularly well. [21].

### 3. The Mediterranean Diet Facilitates Ashmic Cardiometabolism:

The Mediterranean diet is the most scientifically well-grounded dietary pattern of reducing the risk of developing CVD in postmenopausal women. Its emphasis on whole grains, nuts, fish, vegetables and extra virgin olive oil particular targets postmenopausal dyslipidemia, hypertension and inflammation [2].

### 4. Low-Estrogen Environment:

Regular intake of phytoestrogens is also associated with cardiovascular and bone benefits of the established post-menopausal condition. This increased advantage in equol-producers is thought to be because of equol, which is a metabolite of daidzein created by particular gut microorganisms [22].

### Conclusion

Despite the uniqueness of the hormonal lifespan of a woman, the basic role of nutrition never varies. Evidence-based nutritional interventions offer a powerful proactive treatment strategy, including correcting the underlying pathogenesis of PCOS insulin resistance with inositol and a low-glycemic

diet as well as exploiting the SERM-like action of phytoestrogens during perimenopause and placing a priority on protein and bone-forming nutrients during postmenopausal. The latest research is in favor of the trend according to which the individualized, food-as-medicine paradigms are considered and the one-size-fits-all recommendations are dismissed. Importantly, women can positively contribute to their endocrine system, decrease the severity of the symptoms, and reduce the chances of acquiring chronic illnesses by implementing the so-called Hormonal Health Plate as an adaptable template and incorporating functional foods and particular nutrients. This renders nutrition an accurate resource to hormonal equilibrium and enduring efficiency.

## References

- [1] Santoro, N., J. Johnson, G. Neal-Perry, 2021. Modern management of menopause: Physiological transitions and clinical care. *New England Journal of Medicine*, 385(5), 479–490.
- [2] Tosti, V., B. Bertozzi, L. Fontana, 2022. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. *The Journals of Gerontology: Series A*, 77(2), 218–227.
- [3] Unfer, V., F. Facchinetti, B. Orrù, B. Giordani, 2022. Inositol in PCOS: From biochemical pathways to therapeutic applications. *Gynecological Endocrinology*, 38(4), 255–265.
- [4] Gordon, J. L., D.R. Rubinow, T.A. Eisenlohr-Moul, 2021. The roles of estrogen and progesterone in women's mood regulation. *Neuroscience & Biobehavioral Reviews*, 127, 802–817.
- [5] Zhu, T., J. Cui, M.O. Goodarzi, 2022. The role of insulin resistance in the pathogenesis of polycystic ovary syndrome. *Frontiers in Endocrinology*, 13, 879.
- [6] Rosenfield, R. L., D.A. Ehrmann, 2023. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. *Endocrine Reviews*, 44(1), 1–25.
- [7] Moran, L. J., H. Ko, H.J. Teede, 2020. The role of diet and lifestyle in the management of polycystic ovary syndrome. *Seminars in Reproductive Medicine*, 38(2-03), 131–139.
- [8] Jafari-Maram, S., R. Bagheri, S.M. Mousavi, 2021. The effect of dietary protein intake on factors associated with polycystic ovary syndrome: A systematic review and meta-analysis. *Food Science & Nutrition*, 9(6), 3327–3337.
- [9] Yang, K., L. Zeng, T. Bao, 2020. The role of dietary fatty acids in polycystic ovary syndrome: A systematic review. *Nutrition Reviews*, 78(11), 910–922.
- [10] Miao, C. Y., X.J. Fang, Y. Chen, 2021. Vitamin D and polycystic ovary syndrome: A narrative review. *Reproductive Biology and Endocrinology*, 19(1), 1–12.
- [11] Dikmen, E., Y. Ozturk, M.O. Bostanci, 2021. The effect of spearmint tea on hirsutism in women with polycystic ovary syndrome: A randomized controlled trial. *Journal of Ethnopharmacology*, 278, 114305.
- [12] Ahmad, S., A. Moin, A. Krishnan, 2022. The effect of cinnamon supplementation on glycemic control in women with polycystic ovary syndrome: A systematic review and meta-analysis. *Phytotherapy Research*, 36(3), 1120–1131.
- [13] Zhou, L., Z. Ni, J. Yu, 2023. Gut microbiota and polycystic ovary syndrome: A bidirectional Mendelian randomization study. *The Journal of Clinical Endocrinology & Metabolism*, 108(8), 2052–2061.
- [14] Ahmadi, S., M. Jamilian, M. Tajabadi-Ebrahimi, P. Jafari, Z. Asemi, 2020. The effects of probiotic/synbiotic supplementation on metabolic profiles in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized clinical trials. *Clinical Nutrition ESPEN*, 38, 43–60.
- [15] El Khoudary, S. R., G. Greendale, S.L. Crawford, N. E. Avis, J. T. Bromberger, S.A. Everson-Rose, E.B. Gold, R. Hess, S.D. Harlow, H.M. Kravitz, 2022. The menopause transition and women's health at midlife: A progress report from the Study of Women's Health Across the Nation (SWAN). *Menopause*, 29(2), 220–227.
- [16] Boyle, N. B., C. Lawton, L. Dye, 2023. The effects of magnesium supplementation on subjective anxiety and stress—A systematic review. *Nutrients*, 15(2), 362.
- [17] Chen, M. N., J.J. Anderson, 2021. Isoflavones and the health of postmenopausal women: A critical review. *Women's Health*, 17.
- [18] Wei, J., Y. Zhang, M. Li, 2024. Nutritional strategies for the prevention and management of postmenopausal osteoporosis: A consensus statement from the International Osteoporosis Foundation. *Osteoporosis International*, 35(1), 1–15.
- [19] De Souza, M. J., A. Nattiv, K.J. Koltun, 2022. The evidence for dietary protein requirements in postmenopausal women to maintain muscle and bone health. *Journal of the Academy of Nutrition and Dietetics*, 122(5), 1031–1043.
- [20] Maresz, K., 2021. The role of vitamin K2 in bone and cardiovascular health. *Integrative Medicine: A Clinician's Journal*, 20(3), 34–38.
- [21] Murphy, C. H., S.Y. Oikawa, S.M. Phillips, 2021. Protein intake for optimal skeletal muscle maintenance in older adults: A systematic review and meta-analysis. *The American Journal of Clinical Nutrition*, 113(4), 755–765.
- [22] Ito, Y., K. Chapman, C. Jackson, 2022. Equal producer status and benefits of isoflavones for cardiovascular risk factors in postmenopausal women: A systematic review. *Molecular Nutrition & Food Research*, 66(10), e2101061.