

The Expanding Role of Biotechnology in the Diagnosis and Management of Infectious Diseases

Saba Mushtaq¹, Khadija Fatima¹, Hira Fatima¹, Eman Farrukh², Moiza Noor² and Madiha Sarfraz³

1. Department of Biotechnology, Fatima Jinnah Women University Rawalpindi, Pakistan
2. Department of Medical Lab Technology, Government College University Faisalabad, Pakistan
3. Department of Microbiology, The University of Faisalabad, Pakistan

*Corresponding Author: madihasarfraz139@gmail.com

ABSTRACT

The rate of infectious diseases worldwide is still very high, and new pathogens and resistance to antibiotics are major issues. Although they are commonly used, traditional diagnostic methods are often unresponsive in terms of sensitivity and are not very successful. Biotechnology has revolutionized this sector with the introduction of the most sophisticated tools used, such as PCR, next-generation sequencing, and DNA microarrays, which enable fast and accurate determination of infections. Economical diagnosis still requires immunological procedures of ELISA and monoclonal antibodies. Recent advances, such as CRISPR, nanobiotechnology, and lab-on-a-chip technologies, are transforming point-of-care testing and making it more accessible in low-resource environments. In spite of these developments, there is still accessibility and economic constraints. Better epidemic readiness, predictive health surveillance, and smarter diagnostics are just some of the expected results of biotechnology and AI integration in the future.

Keywords: Biotechnology, Infectious diseases, diagnostics, CRISPR, global health, and Emerging technologies

To cite this article: Mushtaq S, K Fatima, H Fatima, E Farrukh, M Noor & M Sarfraz. The Expanding Role of Biotechnology in the Diagnosis and Management of Infectious Diseases. Biological Times. 2025. December 4(12): 15-17.

Introduction

The rapid transmission of bacterial, viral, fungal, and parasitic diseases and their ability to cause epidemics or pandemics, as observed in the case of TB, malaria, HIV/AIDS, and, more recently, COVID-19, is a key global issue of concern. Although TB (1.4 million deaths in 2019), HIV/AIDS (690,000), and malaria (643,000) were still causing huge burdens, COVID-19 alone killed over 18 million people in 2020 [1]. Although they are not as deadly, diseases such as dengue, viral hepatitis, and Ebola may still be harmful because they may lead to frequent epidemics and disruptions in care [2]. These figures prove how catastrophic the impact of infectious diseases on health is and what issues they bring to the economy and the security of the country. Even though the commonly used traditional diagnostic tools, such as culture, microscopy, and serology, are often still used, their low sensitivity, slow turnaround, and inability to distinguish between latent and active infections often hinder timely treatment and contribute to the emergence of antibiotic resistance, especially in low-resource environments.

Biotechnology is filling these gaps with growing frequency and provides more reliable, accurate, and quicker diagnoses. In high-technology and low-resource settings, molecular markers, including PCR and real-time PCR, have greatly contributed to the identification of the pathogen [3]. The comprehensive characterization of the pathogens, antibiotic resistance phenotyping, and outbreak surveillance have become feasible due to next-generation sequencing (NGS) and other state-of-the-art platforms. The innovations will offer useful epidemiological information that will assist control and track down as well as improve patient outcomes. It is thus the

case that biotechnology is presenting a paradigm shift in handling infectious diseases as the traditional modes of diagnosing the diseases are giving way to more specific, effective and specialized modes of treatment [4].

Traditional Techniques and Biotechnological Techniques:

Conventional techniques applied in clinical microbiology comprise biochemical techniques, culture, serology, and microscopy [5]. Microscopy is not particularly sensitive, but rather cheap and fast. The gold standard is culture, but this is time consuming and limited by fussy or already exposed organisms although breakthroughs have been made using monoclonal antibodies. Biochemical diagnostics have weaknesses in the variety of microbes and their growth conditions [6]. In biotechnology, some of these problems have been solved through the design of equipment that is more accurate and faster. PCR and its variants like qPCR and real-time PCR are currently very important in finding nucleic acids. Two areas of next-generation sequencing (NGS) include epidemic surveillance and profiling resistance. Microarrays can be used to detect many pathogens at once by using DNA microarrays; point-of-care testing in resource-limited environments can be done using isothermal techniques like LAMP [7]. Diagnostics has also been under a paradigm shift that improves patient care and worldwide surveillance because of the increased portability and low cost of emerging biosensor and synthetic biology-based technologies [8].

Conventional vs. Biotechnological Diagnostic Approaches in Infectious Diseases:

An overview of the traditional and biotechnological techniques of infectious disease diagnostics is summarized in Table 1 and the respective strength, limitations and clinical use of the methods highlighted.

Table 1: Overview of the traditional and biotechnological techniques of infectious disease diagnostics

Approach	Examples	Strengths	Drawbacks	Applications	References
Microscopy	Gram stain, Acid-fast stain	Quick, affordable, and simple to handle	Low sensitivity, limited in low microbial count, and unable to differentiate between closely related species	TB smear, malaria detection, and preliminary detection	[9]
Culture	Testing for antibiotic susceptibility and bacterial/fungal culture	The gold standard facilitates research isolating and medication screening for susceptibility.	Labor-intensive, slow (days–weeks), and ineffective with fastidious organisms or those that have previously used antibiotics	Resistance characterization and definitive diagnosis	[10]
Serological Tests	Rapid antibody/antigen testing (e.g., COVID-19, HIV) and ELISA	Rapid, flexible, and readily available	Incorrect positives and negatives, cross-reactivity, and an inability to differentiate between current and previous infections	Monitoring, screening, and supplementary diagnostics	[11]

Biochemical Assays	Tests of enzyme activity and sugar fermentation	Explains the metabolism of microorganisms	Requirements of living organisms are time-consuming and have limited specificity.	Labs for teaching and identifying bacteria	[12]
Molecular Methods	PCR, RT-PCR, qPCR,	Fast turnaround, high sensitivity and specificity, and the identification of pathogens that cannot be cultured	Demands certain equipment, poses a danger of contamination, and is more expensive.	HIV viral load, TB, COVID-19, and new pathogen detection	[13]
Next-Generation Sequencing (NGS)	Metagenomics and whole-genome sequencing	Extensive identification of virulence genes, resistance, and several diseases	Costly, complicated data analysis, and a longer turnaround	Monitoring outbreaks and identifying new pathogens	[14]
Biosensor Technologies	Biosensors without labels and sensors based on synthetic biology	Quick, specific, economical, as well as compatible with POC devices	Scalability issues are mostly in the research stage.	A new diagnostic instrument for bacteria, viruses, and fungi	[15]
Mass Spectrometry	MALDI-TOF MS	Quick species identification and, once established, economical	Need database-dependent cultured isolates.	Regular identification of bacteria and fungi in hospitals	[16]

Molecular Biotechnology in Infectious Disease Detection:

Polymerase Chain Reaction (PCR):

The polymerase chain reaction (PCR) is a laboratory nucleic-acid amplification technique that uses DNA polymerase I enzyme to help in the denaturation and renaturation of short strands of DNA [17]. It has revolutionized the diagnostic process of infectious diseases by providing a quick, precise, and specific method of pathogen identification. This molecular technique allows the detection of contagious organisms in low-abundance samples because it amplifies the DNA sequences. Enzymatic nucleic-acid replication is used to advantage to eliminate the time-consuming and less sensitive bacterial culturing method and allows quick and sensitive identification of infections. Adaptations Multiplex PCR and real-time PCR Multiplex PCR and real-time PCR can be used to detect and quantify multiple infections simultaneously. PCR has now become essential in the diagnosis of certain diseases like COVID-19, HIV, and tuberculosis [18].

Next-Generation Sequencing (NGS):

Two years after the Human Genome Project was concluded, new sequencing technology came to light. NGS made it possible to scale the throughput and use large-scale sequencing to detect even small DNA fragments (150–1000 bp) [19]. Essentially, NGS has emerged as a game-changing method of genomics, providing millions of DNA fragments to be sequenced simultaneously, at high throughput and speed, and at a reasonable cost [20]. Due to the detailed genetic data that NGS can give, the technique has transformed clinical diagnostics, microbiology, and veterinary medicine. Its ability to detect genetic mutations, variations, and resistance determinants allows epidemiological surveillance and treatment planning as well as accurate diagnosis of the disease [21]. The high rate of pathogen identification, surveillance of outbreaks, and characterization of zoonotic agents offered by NGS in the context of the management of infectious diseases informs targeted prevention and control programs, such as HIV and other emerging diseases [22].

DNA microarray technology:

The discovery of DNA microarray technology has significantly improved the process of identifying infectious diseases, as it has made it possible to detect a wide range of pathogens, bacteria, viruses, fungi, and parasites in a single run, fast, accurate, and multiplexed [23]. Microarrays are used to offer a quicker option to the conventional methods of culture or immunoassays, hybridizing nucleic acids with designated capture sensors, and could provide results in as short as 24 hours [24]. The ability to identify a variety of infections in the body makes them especially useful in the diagnosis of the syndromic and polymicrobial diseases. Besides being effective in the diagnosis of diseases like COVID-19, community-acquired pneumonia, and foodborne infections, DNA microarrays have shown possibilities of usage in environmental monitoring and detection of microorganisms in water and others, as well as outbreak prevention [25].

Immunological and Protein-Based Biotechnological Tools:

Enzyme-Linked Immunosorbent Assay (ELISA):

One of the most common serological diagnostic modalities that are regularly used in clinical practice and in infectious disease research is the enzyme-linked immunosorbent assay (ELISA). ELISA also enables the accurate identification and determination of antibodies and antigens among other biomolecules, by taking advantage of the high specificity of antigen and antibody reactions [26]. It has been clinically applicable in serological diagnosis of pathology such as HIV, tuberculosis, rubella and measles and therefore screening and confirmational tests [27]. The recent technological innovations including the deployment of portable ELISA platforms have

further increased their use in the instance of outbreaks, thereby providing timely point-of-care diagnosis and timely responses by the public-health units. ELISA is still a key to the field of infectious disease diagnostics because of its flexibility, low cost, and power as it bridges the gap between the traditional approaches to laboratory work and the biotechnological innovations of these days.

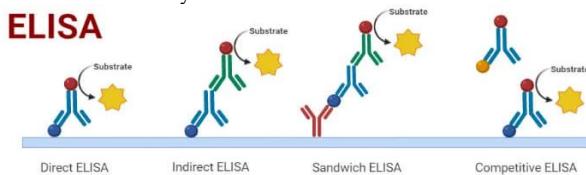


Figure 1: This illustration indicates the four major types of Enzyme-Linked Immunosorbent Assays (ELISA), viz., direct, indirect, sandwich, and competitive. Each of the modalities involves the enzyme-linked reactions to produce a measurable chromogenic signal. The figure explains the steps of differential attachment and detection methods used by each assay; that is, direct ELISA employs a single labeled antibody, indirect and sandwich ELISA employ more than one antibody to increase the sensitivity of the assay, and competitive ELISA quantifies the concentration of antigen by measuring the degree of binding competition.

Western Blotting & Immunofluorescence:

Western blotting, whereby proteins are separated by their molecular weight, is more sensitive and specific and thus can be used to detect disease-specific antibodies [28]. The method has been effective in determining a range of pathogens, such as African tick bite fever, hydatidosis, HIV, and tularemia. Additionally, western blotting has been shown to differentiate infections with similar clinical manifestations like paracoccidioidomycosis and tuberculosis. Immunofluorescence microscopy gives an absolute visualization of the antigen-antibody reactions and enriches serological diagnosis of diseases like Lyme borreliosis and HIV. The versatility of the method can be applied to any wider cellular studies, including those of autophagy, and its relative affordability makes it especially beneficial when resources are limited.

Monoclonal Antibody Technology:

The monoclonal antibody (mAb) technology has greatly enhanced the diagnostic procedures applied in infectious diseases like hepatitis, dengue and malaria as it offers highly specific and sensitive detection processes. The lapses in the preventive therapy are bridged by the administration of monoclonal antibodies that stimulate the quick and precise identification of *Plasmodium falciparum* and *P. vivax*, by use of lactate dehydrogenase (LDH). Dengue tests are sensitive and specific at the most, to 98 and 99 percent, respectively using immunochromatographic methods based on employing mAbs to viral envelope proteins [29]. They can tell the difference between primary and secondary infections, which is crucial in this context of dealing with the patient. Similarly, mAbs that have been developed by the hybridoma system against the hepatitis A virus have high viral-neutralizing and detection characteristics that enhance precision in hepatitis diagnosis and broaden treatment.

Emerging Biotechnological Innovations:

The outbreak of infectious diseases (EIDs) such as SARS, MERS, Ebola, Zika, and COVID-19 has shown that the global health systems have major flaws. The metastasis of these pathogens with the help of globalization, climate change, and interspecies contacts suggests a serious need for new methods of biotechnology to prevent, diagnose, and treat the disease.

One of the most promising recent advancements is CRISPR-based gene-editing technologies, which present a breakthrough in terms of the treatment of infectious diseases [30]. Methods to identify drug-resistant genetic targets, high-speed and cheap methodological diagnostic systems, and therapeutic methods that can interrupt the integrated viral genomes or focus on the bacteria containing the resistance are now being undertaken with CRISPR systems [31]. Such capabilities are also widened with state-of-the-art strategies like reprogramming of B lymphocytes to produce neutralizing antibodies. Clinical trials of different diseases have shown promising results in the early clinical analysis of treatment of infectious diseases based on CRISPR-derived therapeutics, despite the issue of safety with regard to unintended genetic modification. Other technologies, such as the lab-on-a-chip (LOC) systems and nanobiotechnological systems, are also changing point-of-care diagnostics. Nanomaterials like graphene, quantum dots, and gold nanoparticles can lead to the detection of pathogens at extremely low levels, hence creating portable and low-cost biosensors that can be used to quickly detect bacterial and viral infections [32]. Low cost, speed, and portability are also part of the LOC devices; even in resource-constrained settings, the sensitivity and utility of the LOC devices can be increased by the implementation of advanced detection methods, multiplexing, and the use of microfluidic systems. Taken together, these technological innovations are a strong means to supplement disease-prevention functions and to enhance health preparedness in the world.

Challenges and Future Directions:

Although tremendous achievements were made, there were still significant setbacks in the application of biotechnological innovations in the management of infectious diseases. The use of advanced diagnostic instruments is limited by high prices and inaccessibility, especially in most of the developing countries where disease burden is the highest. To overcome these inequalities, biotechnologies should be developed into portable, scalable, and cheaply priced tools to be used in large-scale applications in resource-constrained areas.

Moreover, biotechnology and artificial intelligence (AI) might become prospective because they will enable the implementation of smart diagnostic solutions, which will be able to offer real-time analysis, predictive health monitoring, and enhanced epidemic forecasting. Such inventions related to the sphere of disease detection and tracking can introduce greater precision and transparency and can even have a more significant effect on the world.

Conclusion:

Biotechnology is transforming the way infectious diseases are being identified and treated by making the traditional methods less efficient. CRISPR, nanobiotechnology, and LOC devices are new technologies that present strong alternatives in terms of point-of-care application, but molecular and immunological tests continue to increase the accuracy of diagnosis. The factors of affordability and accessibility should be highlighted to achieve the global impact. This is due to the fact that the combination of biotechnology and AI offers great advantages in predicting analytics in healthcare, accelerates the epidemic response process, and promotes health security globally.

References

- [1] Wu J, Mafham M, Mamas MA, Rashid M, Kontopantelis E, Deanfield JE, de Belder MA, Gale CP. Place and underlying cause of death during the COVID-19 pandemic: retrospective cohort study of 3.5 million deaths in England and Wales, 2014 to 2020. In Mayo Clinic Proceedings 2021 Apr 1 (Vol. 96, No. 4, pp. 952-963). Elsevier.
- [2] Weber, D. J., Rutala, W. A., Fischer, W. A., Kanamori, H., & Sickbert-Bennett, E. E. (2016). Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A (H5N1) and A (H7N9). American journal of infection control, 44(5), e91-e100.
- [3] Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A systematic review on suitability of molecular techniques for diagnosis and research into infectious diseases of concern in resource-limited settings. Current Issues in Molecular Biology. 2022 Sep 21;44(10):4367-85.
- [4] Fatima G, Magomedova A, Parvez S. Biotechnology and sustainable development. Shineeks Publishers; 2024 Apr 14.
- [5] Vidyarthi AJ, Das A, Gupta A. Revisiting conventional microbiology techniques in the era of molecular testing. Current Medicine Research and Practice. 2022 Nov 1;12(6):274-9.
- [6] Rentschler S, Kaiser L, Deigner HP. Emerging options for the diagnosis of bacterial infections and the characterization of antimicrobial resistance. International journal of molecular sciences. 2021 Jan 5;22(1):456.
- [7] Das D, Liu CW, Chuang HS. LAMP-based point-of-care biosensors for rapid pathogen detection. Biosensors. 2022 Nov 23;12(12):1068.
- [8] Alla S, Mohanty J, Sriraman H, Chatta VK. Navigating the frontier: Integrating emerging biomedical technologies into modern healthcare. In Intelligent Biomedical Technologies and Applications for Healthcare 5.0 2025 Jan 1 (pp. 229-243). Academic Press.
- [9] Qiao C, Li D, Liu Y, Zhang S, Liu K, Liu C, Guo Y, Jiang T, Fang C, Li N, Zeng Y. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nature biotechnology. 2023 Mar;41(3):367-77.
- [10] Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nature Biotechnology. 2025 Mar;43(3):329-44.
- [11] Hanssen DA, Slaats M, Mulder M, Savelkoul PH, van Loo IH. Evaluation of 18 commercial serological assays for the detection of antibodies against SARS-CoV-2 in paired serum samples. European Journal of Clinical Microbiology & Infectious Diseases. 2021 Aug;40(8):1695-703.
- [12] Hafezi A, Khamar Z. The Method and Analysis of Some Biochemical Tests Commonly Used for Microbial Identification: A Review. Comprehensive Health and Biomedical Studies. 2024;3(3).
- [13] Mehta N. RT-qPCR made simple: A comprehensive guide on the methods, advantages, disadvantages, and everything in between. Undergraduate Research in Natural and Clinical Science and Technology Journal. 2022 Oct 18;6:1-6.
- [14] Mandlik JS, Patil AS, Singh S. Next-generation sequencing (NGS): platforms and applications. Journal of Pharmacy and Biostatistics. 2024 Feb 1;16(Suppl 1):S41-5.
- [15] Azzouz A, Hejji L, Kim KH, Kukkar D, Souhal B, Bhardwaj N, Brown RJ, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosensors and Bioelectronics. 2022 Feb 1;197:113767.
- [16] Jarrold MF. Applications of charge detection mass spectrometry in molecular biology and biotechnology. Chemical reviews. 2021 Oct 12;122(8):7415-41.
- [17] Gautam A. Polymerase chain reaction (PCR). In DNA and RNA Isolation Techniques for Non-Experts 2022 Mar 30 (pp. 157-163). Cham: Springer International Publishing.
- [18] Scimone C, Palumbo L, Borea R, Sarracino C, Tomaiuolo I, Di Giovanni D, Alfano S, Naccchio M, Russo G, Russo A, Pepe F. Innovation in next-generation sequencing in non-Small cell lung cancer diagnostics. Expert Review of Anticancer Therapy. 2025 Aug 25:1-9.
- [19] Wang M. Next-generation sequencing (NGS). In Clinical molecular diagnostics 2021 Jul 9 (pp. 305-327). Singapore: Springer Singapore.
- [20] Sahoo OS, Aidasani H, Nayek A, Tripathi S, Talukdar J, Gul A, Kumar D, Dhar R, Karmakar S. Role of next-generation sequencing in revolutionizing healthcare for cancer management. MedComm—Future Medicine. 2024 Dec;3(4):e70001.
- [21] Akindahunsi T, Olulaja O, Ajayi O, Prisca I, Onyenegenecha UH, Fadojuotimi B. Analytical tools in diseases epidemiology and surveillance: A review of literature. International Journal of Applied Research. 2024 Jan;10(9):155-61.
- [22] Vashish V, Vashish A, Mondal AK, Farmaha J, Alptekin A, Singh H, Ahluwalia P, Srinivas A, Kolhe R. Genomics for emerging pathogen identification and monitoring: Prospects and obstacles. BioMedInformatics. 2023 Dec 7;3(4):1145-77.
- [23] Asmara Z, Erkhan M. Recent application of DNA microarray techniques to diagnose infectious disease. Pathology and Laboratory Medicine International. 2023 Dec 31:77-82.
- [24] Negi A, Shukla A, Jaiswar A, Shrinet J, Jasrotia RS. Applications and challenges of microarray and RNA-sequencing. Bioinformatics. 2022 Jan 1:91-103.
- [25] Sulaiman IM, editor. Diagnosis of pathogenic microorganisms causing infectious diseases. Florida, US: CRC Press; 2024 Feb 13.
- [26] Noor S, Fatima A, Fatima I, Javed A. Antigen-Antibody Interaction in Cell Signaling. InCell Signaling 2025 Apr 17 (pp. 92-125). CRC Press.
- [27] Wrieght T, Kudessia G. Clinical and diagnostic virology. Cambridge university press; 2024 Apr 18.
- [28] Singh KK, Gupta A, Bharti C, Sharma H. Emerging techniques of western blotting for purification and analysis of protein. Future Journal of Pharmaceutical Sciences. 2021 Dec 14;7(1):239.
- [29] Macêdo JV, Farias IA, Oliveira MD, Zanghelini F, Andrade CA. A systematic review and meta-analysis on the accuracy of rapid immunochromatographic tests for dengue diagnosis. European Journal of Clinical Microbiology & Infectious Diseases. 2022 Sep;41(9):1191-201.
- [30] Afzal MA, Shahzadi N, Saadat S, Seemab R, Tariq IS, Ashraf SR, Tahir S, Khalil HA. CRISPR-Cas9 GENOME-EDITING TECHNOLOGY: A TRANSFORMATIVE TOOL FOR CURING HUMAN DISORDERS. JMHSR. 2025 Jul; 29; 2(3).
- [31] Olutunji AO, Olaboye JA, Maha CC, Kolawole TO, Abdul S. Next-generation strategies to combat antimicrobial resistance: Integrating genomics, CRISPR, and novel therapeutics for effective treatment. Engineering Science & Technology Journal. 2024;5(7):2284-303.
- [32] Parkhe VS, Tiwari AP. Gold nanoparticle-based biosensors: pioneering solutions for bacterial and viral pathogen detection—a comprehensive review. World Journal of Microbiology and Biotechnology. 2024 Sep;40(9):269.