

Harnessing Biotechnology to Develop Disease-Resilient Plants

Uzair Imran¹, Haider Ali Aslam¹, Muhammad Sufyan¹, Waqar Younis², Muhammad Waseem³ and Muhammad Amir^{1*}

1. Centre of Agriculture Biochemistry and Biotechnology, University of Agriculture Faisalabad, Pakistan
2. Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
3. Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan

*Corresponding Author: amirbzu2023@gmail.com

ABSTRACT

Plant diseases continue to be the key limitation to agriculture in the world, and the climate changes are contributing to the pressure of the pathogens and deteriorating the resistance of the hosts. Conventional breeding is not always enough to meet the need for broad-spectrum resistance and durability. Biotechnology provides specific methods to surmount these shortcomings by providing specific manipulation of genomes, control over the pathogen, and preferential purposeful modification of the relationship between plants and microbes. This short review talks about important biotechnological ways to make plants more resistant. These include transgenic expression of resistance genes, CRISPR-based gene editing, RNA-based silencing, molecular marker-assisted selection, tissue culture and regeneration, microbial engineering, and synthetic biology strategies. The principles, applications and limitations of each strategy are discussed with regard to the complementary functions in resistance breeding. Lastly, the review offers insights into how these tools can be combined to come up with crops that are resilient, flexible, and those that can endure the changing disease threats in order to maintain agricultural output.

Keywords: Plant biotechnology, Disease resistance, Gene editing, Transgenic plants, RNA interference, Marker-assisted selection, Synthetic biology, Plant-microbe interactions

To cite this article: Imran U, HA Aslam, M Sufyan, W Younis, M Waseem & M Amir. Harnessing Biotechnology to Develop Disease-Resilient Plants. Biological Times. 2025. December 4(12): 46-48.

Introduction

The production of crops that are sustainable is dependent on the capacity of plants to protect themselves against diverse pathogens, such as viruses, bacteria, fungi and nematodes. Traditional breeding has also provided numerous varieties of resistance but the process is very sluggish and is mostly hampered by the diminished genetic variation to produce high resistance(1). Pathogen evolution is fast and the environment pressures may compromise plant resistance and resistance against pathogens is a moving target to the breeder.

Biotechnology has led to a revolution in the breeding of resistance because it offers instruments that do not rely on natural variation. Gene editing, transgenic engineering, RNA interference, molecular markers and synthetic biology are also some techniques through which researchers can design resistance with precision, alter particular parts of susceptibility and develop new defense pathways where nature does not provide(2). The ability of these tools to induce resistance, which is highly specific and long-lasting, is due to the fact that such tools target well-defined molecular targets. This mini review summarizes all the larger biotechnology platforms that have been utilized to confer plant resistance and how these platforms appear to complement each other in contemporary crop improvement approaches.

2. Molecular Basis of Plant Resistance

The biotechnological interventions can be based on the understanding of the way's plants can resist pathogens. There are two layers of immunity in plants which are interrelated.

Pattern-Triggered immunity (PTI): Pattern-recognition receptors allow plants to discover conserved microbial signal like bacterial flagellin or fungal chitin. Stimulation of PTI results in defense mechanisms such as deposition of callose, reactive oxygen species and transcriptional reprogramming(3).

Effector-induced immunity (ETI): Pathogens release effectors to stop PTI. Plants respond by expressing genes of resistance (R) which can either recognize these effectors directly or indirectly. ETI produces a more intense reaction, which in most cases is localized cell death(4).

The two layers have hormonal signaling networks that support salicylic acid, jasmonic acid and ethylene. Biotechnology can target these immune components in a number of manners: the introduction of high-affinity R genes of other species, alterations of susceptibility genes, which pathogens use, or amplification of important signaling nodes like NPR1(5). The molecular-level of host-pathogen interaction dictates the genetic intervention.

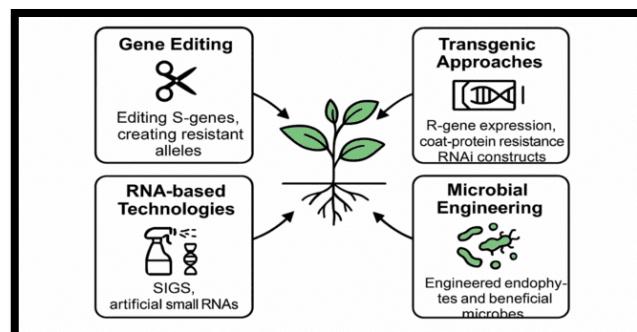


Figure 1: Biotechnological platforms that enhance disease resistance through targeted genome modification, transgenic resistance, RNA-based silencing and engineered plant-microbe interactions.

3. Genetic Engineering for Resistance

Transgenic R genes: There are numerous crops that do not have a good natural resistance to significant pathogens. R genes of wild relatives or other plants have been shown to be highly expressed in transgenic plants. As an example, potato has a transfer of broad-spectrum R genes against late blight, and bacterial blight in rice(6).

Pathogen-derived resistance: Biotechnology uses the pathogen itself as the source of inducing resistance in plants. One of the first examples was the coat protein-mediated resistance in which the expression of the viral coat protein genes in plants disrupts the uncoating of the virus(7).

- Proteins and constructs that are based on movement proteins have the ability to prevent virus replication or cell-to-cell infection.
- Plant immunity can be primed with protein-based fungal or bacterial elicitors to suppress the development of diseases.
- S-gene engineering, which is host susceptibility gene modification.
- The number of pathogens that rely on host susceptibility genes is large. Resistance can be greatly improved by overexpression, silencing or editing of these genes.
- The latter include SWEET sugar transporters that bacteria blight uses in rice, MLO genes that confer susceptibility to powdery mildew and eIF4E translation factors that are utilized by RNA viruses(8).

Transgenic RNAi constructs

RNA interference (RNAi) is still a potent weapon of resistance. Pathogen development can be prevented by plants that express double-stranded RNA that is programmed to detect pathogen transcripts. This has been applied in

combating viruses, nematodes and insects. Transgenic RNAi is very specific and it can be combined with other defense characteristics.

4. Gene Editing Tools in Resistance Development

Because it is precise and efficient, gene editing has turned out to be one of the most significant technologies in designing resistant crops.

CRISPR-Cas systems has been used to:

- impact knock out susceptibility genes.
- modify R gene alleles
- introduce novel resistance characteristics.
- develop multiplex edits to minimize the adaptation of the pathogen.

As demonstrated by editing host factors (eIF4E genes) to give a high-resistance to potyviruses and by editing MLO genes to give full powdery mildew resistance in various crops, editing genes results in a high level of resistance.

Base and prime editing: Base editing enables editing of single nucleotides without the formation of double-stranded breaks. This can be applied in modification of particular amino acids which influence pathogen recognition. Prime editing has even better control, as it has the ability of small insertions, deletions or replacements. In resistance breeding, it is capable of re-creating natural resistant alleles that were found in wild species(9).

Manipulation of viral genomes in vivo: CRISPR application has been directly applied to viruses that infect plants, e.g. geminiviruses. Viral replication within the plant can be interfered with guide RNAs directed to replication origins or capsid regions. This plan is applicable in stable integration as well as in transient expression systems.

Case studies

- Modification of OsSWEET genes in rice has resulted into varieties that are resistant to several strains of bacterial blight.
- CRISPR modification of mildew-resistance genes in wheat offers protection that is long-term.
- In several species, infecting with geminiviruses, the infection can be reduced by targeting the replication-associated protein by more than 90 percent(10).

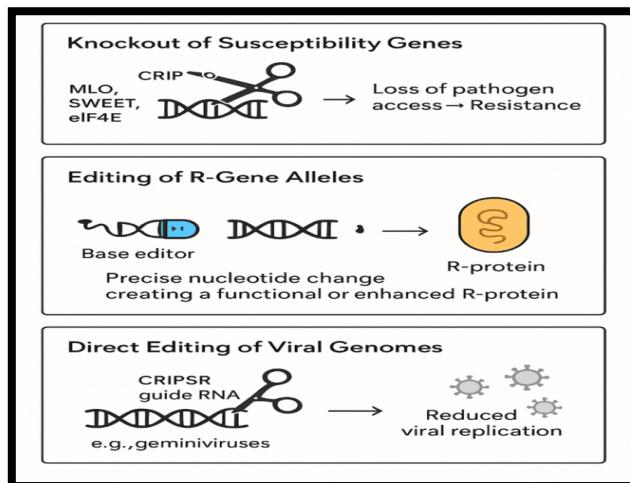


Figure 2: Gene editing options used to improve resistance: removal of susceptibility genes, modification of immune receptors and direct targeting of viral genomes.

5. RNA-Based Technologies

RNA interference (RNAi): RNAi remains a core tool for generating resistance. Plants engineered to produce small interfering RNAs (siRNAs) can silence essential pathogen genes. RNAi also supports resistance against insects that vector viruses, contributing indirectly to disease control.

Spray-induced gene silencing (SIGS): SIGS delivers RNA molecules directly onto plant surfaces, allowing transient resistance without genetic modification. This has been used for fungal pathogens, plant viruses and leaf-eating insects(11). SIGS offers a path for biotechnological disease control where transgenic plants are not accepted by regulators or consumers.

Artificial sRNAs and synthetic miRNAs: Engineered small RNAs can target multiple pathogen genes simultaneously. Synthetic microRNAs designed against viral suppressors of RNA silencing increase the effectiveness of RNAi and reduce viral accumulation.

6. Molecular Marker Technologies

Marker-assisted selection (MAS): Molecular markers linked to resistance genes speed the breeding process by allowing early selection without phenotypic screening. MAS is especially important for traits controlled by single major R genes.

Genomic selection (GS): GS uses genome-wide markers to predict resistance phenotypes. When combined with biotechnology, GS helps integrate edited or transgenic traits into elite germplasm more efficiently. High-throughput genotyping platforms: SNP arrays, GBS and PCR-based markers allow efficient screening for edited alleles, resistance gene pyramiding and tracking of transgenes in breeding populations(12).

7. Tissue Culture and Regeneration Approaches

Somaclonal variation: Plants regenerated from callus culture sometimes develop beneficial mutations. Screening somaclonal variants has produced disease-resistant lines in sugarcane, banana and rice.

Haploid and doubled haploid production: These systems fix resistance traits rapidly and speed up evaluation of edited or transgenic events.

Micropropagation: Micropropagation ensures rapid multiplication of resistant varieties and maintains genetic fidelity. It is also useful for conserving disease-resistant germplasm. Tissue culture is also essential for transformation, gene editing and regeneration of modified plants(13).

8. Synthetic Biology in Plant Defense

Synthetic biology aims to design new biological systems rather than modify existing ones.

Synthetic promoters and circuits: Engineered promoters can activate resistance genes only when pathogens are detected, reducing fitness costs associated with constitutive defense activation.

Modular design of immune pathways: Pathways such as salicylic acid signaling can be rewired to increase responsiveness. Artificial receptors designed to recognize pathogen molecules can provide novel recognition capabilities.

Biosensors for pathogen detection: Plants engineered with biosensor modules can detect early infection signals and activate defense or report infection through visible markers. These systems broaden the range of defense strategies beyond natural mechanisms(14).

9. Biotechnological Approaches to Strengthen Microbial Associations

Engineering beneficial microbes: Endophytes and rhizobacteria can be engineered to produce antimicrobial peptides, trigger induced systemic resistance or interfere with pathogen communication.

Microbiome manipulation: Biotechnology provides tools for selecting or designing microbial consortia that improve plant immunity. This approach is promising because microbes adapt dynamically to the environment.

Plant-microbe interaction engineering: Introducing genes that improve plant recruitment of helpful microbes can enhance resistance under field conditions, especially against soil-borne pathogens.

10. Future Directions

Biotechnology will continue shaping plant disease resistance through several emerging trends.

Gene stacking and multiplex editing: Stacking multiple defense traits through transgenic pyramiding or multiplex CRISPR editing will reduce the chances of pathogen escape(15).

Resistance tailored to climate stress: Abiotic stress weakens plant immunity, so future engineering strategies may combine drought tolerance with enhanced defense.

Field deployment and biosafety: Biotech-based resistance must be tested across diverse environments to ensure stability. Regulatory acceptance and public communication remain essential.

Integration with digital agriculture: High-resolution monitoring and predictive tools can help guide where biotech-based resistant varieties are deployed for maximum impact.

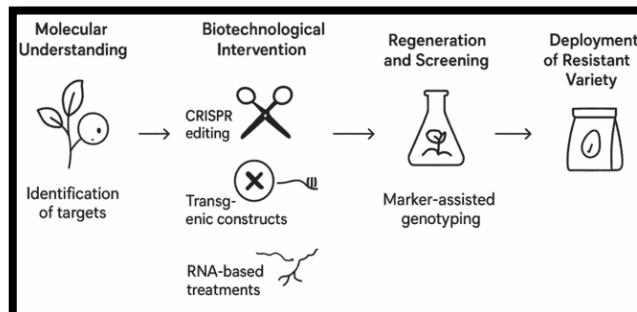


Figure 3: A modern resistance-breeding pipeline integrating molecular insights with genome editing, transgenic methods, RNA tools and marker-based selection.

Conclusion

Biotechnology has become a central strategy for developing resistant crops by enabling targeted, efficient and often durable defense solutions. While natural variation remains valuable, genetic engineering, RNA-based tools, gene editing, molecular markers, tissue culture, microbial engineering and synthetic biology expand the range of tactics available to plant scientists. As these tools become more precise and accessible, future resistance

breeding will rely on integrated approaches combining natural defense pathways with designed molecular traits. The goal is to build resilient plants capable of withstanding evolving pathogen pressures in a changing climate.

References

- [1] Begna T. Major challenging constraints to crop production farming system and possible breeding to overcome the constraints. *International Journal of Research Studies in Agricultural Sciences (IJSRAS)*. 2020;6(7):27-46.
- [2] Pixley KV, Falck-Zepeda JB, Giller KE, Glenna LL, Gould F, Mallory-Smith CA, et al. Genome editing, gene drives, and synthetic biology: will they contribute to disease-resistant crops, and who will benefit? *Annual Review of Phytopathology*. 2019;57(1):165-88.
- [3] Mohammadi MA, Cheng Y, Aslam M, Jakada BH, Wai MH, Ye K, et al. ROS and oxidative response systems in plants under biotic and abiotic stresses: revisiting the crucial role of phosphite triggered plants defense response. *Frontiers in Microbiology*. 2021;12:631318.
- [4] Jacob P, Hige J, Dangl JL. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? *Nature Plants*. 2023;9(8):1184-90.
- [5] Pieterse CM, Van Loon L. NPR1: the spider in the web of induced resistance signaling pathways. *Current opinion in plant biology*. 2004;7(4):456-64.
- [6] Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. *Planta*. 2022;255(6):127.
- [7] Lindbo JA, Falk BW. The impact of "coat protein-mediated virus resistance" in applied plant pathology and basic research. *Phytopathology*. 2017;107(6):624-34.
- [8] Mondal KK. 4 Basic Research Advances on Bacterial T3SS-Effectors Mediated Blight Developments in Rice and Pomegranate. *Advances in Plant Disease Management: Volume I: Fundamental and Basic Research*. 2023.
- [9] Matres JM, Hilscher J, Datta A, Armario-Nájera V, Baysal C, He W, et al. Genome editing in cereal crops: an overview. *Transgenic research*. 2021;30(4):461-98.
- [10] Bisaro DM. Geminivirus DNA replication. *DNA replication in eukaryotic cells*. 1996;33:833-54.
- [11] Visser I. RNAi of selected insect genes: Stellenbosch: Stellenbosch University; 2016.
- [12] Rayaprolu L, Deshpande SP, Gupta R. Genotyping-by-sequencing (GBS) method for accelerating marker-assisted selection (MAS) program. *Genomics of cereal crops*: Springer; 2022. p. 245-57.
- [13] Kumar N. *Biotechnology and crop improvement: tissue culture and transgenic approaches*: CRC Press; 2022.
- [14] Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJ, Ford R. Biosensor technologies for early detection and quantification of plant pathogens. *Frontiers in Chemistry*. 2021;9:636245.
- [15] Rajput R, Naik J, Misra P, Trivedi PK, Pandey A. Gene pyramiding in transgenic plant development: approaches and challenges. *Journal of Plant Growth Regulation*. 2023;42(10):6038-56.