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ABSTRACT

The growing demand for resilient crops, climate change and the availability of high-throughput sequencing and sensor technologies have
created an unprecedented opportunity for data-driven crop improvement. Multi-omics technologies (genomics, transcriptomics,
proteomics, metabolomics, epigenomics and phenomics) capture different layers of biological information, yet analysing each layer
separately loses the holistic view of how these molecules collectively shape phenotype. Integrating these heterogeneous datasets with
artificial intelligence (Al) can reveal complex gene-environment interactions and accelerate trait improvement. This review, written from
a plant breeder’s perspective, summarizes the current state of Al-assisted multi-omics integration in plant genetics. We describe the omics
landscape, discuss machine-learning algorithms and integrative frameworks, review applications in breeding (stress tolerance, disease
resistance, yield and quality traits), and examine challenges such as data heterogeneity, model interpretability and equitable data sharing.
Finally, we offer recommendations for the next generation of Al-enabled plant breeding programs.
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Introduction

Traditional plant breeding relies on phenotypic selection and, more recently,
marker-assisted selection, which focus on single loci or simple traits. High-
throughput sequencing, mass-spectrometry and imaging technologies now
produce petabytes of data representing the genome, transcriptome,
proteome, metabolome and phenotype of plants. The combination of these
so-called “multi-omics” datasets with Al and machine-learning (ML)
algorithms promises to revolutionize plant breeding. Al models can uncover
hidden patterns, model nonlinear relationships and predict phenotypes from
multidimensional data better than traditional statistics. From a breeder’s
point of view, integrating Al with multi-omics can shorten breeding cycles,
increase prediction accuracy and provide insights into trait architecture that
would be impossible to obtain through field selection alone [1].

2. Overview of Multi-Omics Technologies and Plant Genetics
Multi-omics refers to the integrative study of several “omic” layers
genomics, transcriptomics, proteomics, metabolomics, epigenomics and
phenomics.

2.1 Genomics and Pan-Genomics

Genomics forms the foundation of plant breeding. Sequencing technologies
now allow assembly of pan-genomes comprising hundreds of accessions,
capturing core genes, dispensable genes and rare alleles that contribute to
stress adaptation and yield. Pan-genomic approaches can reveal structural
variants and presence—absence variation often missed by single reference
genomes. High-density markers derived from sequencing are used in
genomic selection and genome-wide association studies (GWAS), but their
predictive power alone is limited for complex traits [2, 3].

2.2 Transcriptomics

Stress responses involve coordinated transcriptional programs. Single-cell
RNA sequencing now allows exploration of cell-type-specific responses;
ML algorithms such as SIMLR and neural networks enable clustering,
trajectory inference and integration of multimodal data [4]. Integrating
transcriptomic data with genomic markers improves prediction accuracy for
traits like yield or stress tolerance, as shown in maize and rice genomic-
selection models [5].

2.3 Proteomics and Metabolomics

Metabolomics quantifies metabolites reflecting biochemical pathways.
Multi-omics studies show that integrating proteomic and metabolomic data
with genomic markers enhances trait prediction.

2.4 Multi-Omics Integration Strategies

Horizontal integration merges datasets of the same omics type collected
under diverse conditions or populations to increase robustness. Vertical
integration combines different omics layers measured in the same samples
to elucidate molecular cascades [6]. Multi-Omics toolbox (MOTBX) and
Omics Fusion provide user-friendly platforms for breeders to combine
omics layers and visualise results [7, 8].
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Figure 1: Conceptual framework for AI-driven multi-omics integration in plant genetics
3. Artificial Intelligence in Plant Genetics and Breeding
Gene discovery: Integrating multi-omics data with ML improves the
mapping of causal genes. Population-scale multi-omics analyses treat
transcripts, proteins and metabolites as molecular traits (mTraits) and high-
throughput phenotypic features as imaging traits (iTraits). Dimensionality-
reduction algorithms (e.g., non-negative matrix factorization) and clustering
(e.g., DBSCAN) are used to create “pseudo-genotype” indices that
summarise genomic variation and relate it to mTraits. These strategies
enhance GWAS resolution and help fine-map alleles affecting complex
traits [9].
Genotype-to-phenotype prediction: Genomic selection models use high-
density markers to predict breeding values, but their accuracy suffers when
traits have low heritability or strong GXE interactions. ML methods can
model nonlinear relationships and integrate multiple data types. For
example, integrating SNP genotypes with transcriptomic markers using
random forests improved drought-tolerance prediction in maize (predictive
R? = 0.72). In legumes, combining genomic, epigenomic, proteomic and
metabolomic data with ML captured nonlinear relationships better than
linear models and improved disease-resistance predictions. Automated
feature selection using algorithms like Light Gradient Boosting Machine
(LightGBM) can identify trait-associated SNPs consistent with GWAS
peaks [10, 11].
Phenotyping and stress detection: Computer vision coupled with deep
learning accurately classifies stress symptoms from images, quantifies leaf
area and estimates biomass. Support-vector machines and neural networks
have identified drought- and salt-resistance genes in Arabidopsis, maize and
rice. Al also assists in reconstructing gene regulatory networks from time-
series expression data and predicting long non-coding RNAs associated
with abiotic stress [12, 13].
4. Integrating Multi-Omics Data and Al
4.1 Data Integration Frameworks
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Successful integration requires careful preprocessing normalisation, batch
correction and feature selection to handle different scales and missing data.
Graph-based approaches build networks linking genes, metabolites and
proteins; network inference algorithms such as iDREM use hidden Markov
models to reconstruct dynamic regulatory events from time-series multi-
omics data. Modem integrative frameworks combine these methods with
Al to address high dimensionality, heterogeneity and nonlinearity [14, 15].
4.2 Al Algorithms for Multi-Omics Integration

Random forest (RF): RF is an ensemble of decision trees well suited for
high-dimensional multi-omics data because it can model nonlinear
interactions and does not require normally distributed features. RF models
integrating genomic, transcriptomic and metabolomic data have predicted
potato quality traits and stress tolerance in maize.

Support-vector machines (SVM): SVM algorithms classify complex
patterns by maximizing the margin between classes. Variants of SVM have
been used to identify genes associated with drought and salt resistance and
to classify abiotic vs. biotic stress responses in rice. Kernel functions allow
SVM to model nonlinear relationships in multi-omics data [16].
Dimensionality-reduction (DR) techniques: Principal component
analysis (PCA), non-negative matrix factorization (NMF), t-distributed
stochastic neighbour embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) reduce dimensionality and
visualise high-dimensional data. For example, the Multi-Omics Data
Association Studies (MODAS) toolbox uses NMF and clustering to
summarise millions of SNPs into thousands of genomic blocks. These
methods alleviate the “curse of dimensionality” and facilitate integrative
analysis [17].

4.3 Tools and Platforms

An expanding ecosystem of software supports Al-based multi-omics
integration. mixOmics and its DIABLO module implement supervised and
unsupervised multivariate analyses and produce relevance networks.
MOFA and MOFA+ use matrix factorisation to identify latent factors
driving variation across omics layers, allowing missing data. iOmicsPASS
combines multi-omics data with phenotype information to prioritise
biomarkers and modules. MOTBX, Omics Fusion and other cloud-based
platforms offer breeders user-friendly interfaces to integrate data and
visualise results. These tools typically incorporate ML algorithms and are
essential for non-expert breeders to exploit multi-omics data [6].

5. Applications in Plant Breeding

5.1 Stress and Disease Resistance

Abiotic stresses such as drought, heat and salinity threaten crop yields. Al-
assisted multi-omics techniques have been used to identify stress-response
genes and biomarkers. Integrating genomics, transcriptomics and
metabolomics with ML allows accurate prediction of stress tolerance and
rapid identification of candidate genes. In legumes, combining genomic,
transcriptomic, epigenomic, proteomic and metabolomic data with ML
improved predictions of disease resistance and has the potential to shorten
breeding cycles [18].

5.2 Yield and Quality Traits

Yield and quality traits (e.g., seed size, nutrient content, tuber texture) are
polygenic and influenced by environment. Integrating multi-omics layers
enhances predictive accuracy for such traits. In potato, a random-forest
model combining genomic, transcriptomic, proteomic and metabolomic
data predicted tuber flesh colour, shape and enzymatic discolouration better
than single-omics models. In maize and rice, integrating transcriptomic
markers with genomic data improved yield predictions. Multi-omics data
also enable mapping of metabolic pathways controlling nutritional traits.
For example, multi-omics approaches identified candidate genes for kernel
size in maize and oat nutritional traits through combined proteomic and
metabolomic QTL analysis [19, 20].

5.3 Genotype-by-Environment Interactions and Climate Resilience
Climate change intensifies abiotic and biotic stresses, necessitating crops
resilient to variable environments. Multi-omics integration coupled with
predictive modelling can capture GXE interactions by incorporating
environmental covariates and digital phenotyping. Integrating multi-omics
technologies (genomics, transcriptomics, proteomics, metabolomics,
phenomics) with machine learning and deep learning has revolutionised our
understanding of plant stress networks and enables accurate genotype-to-
phenotype predictions [21].

6. Future Perspectives and Recommendations

6.1 Developing Robust AI Models and Expanding Training Datasets
Future models must handle heterogeneous, high-dimensional data, integrate
prior biological knowledge and deliver interpretable outputs. Ensemble
methods, graph neural networks and transfer learning can improve
prediction robustness. Federated learning may allow sharing model
parameters without exposing data, addressing privacy concerns. Collecting
diverse multi-omics datasets across environments and breeding populations
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will improve model generalisation and capture GXE interactions.
Collaboration between breeders, computational biologists and data
scientists is crucial [22].
6.2 Enhancing Multi-Omics Data Quality and Standardization
Standardised protocols for sampling, sequencing and data processing are
needed to ensure comparability across studies. FAIR data repositories,
integrated omics databases and metadata standards should be adopted.
Platforms like MOTBX and Omics Fusion should incorporate quality-
control pipelines and promote reproducibility. Investment in high-
throughput phenotyping infrastructure will generate consistent iTraits,
enabling integration with molecular data [23].
6.3 Training Plant Breeders in Data Science and Al
The next generation of plant breeders must be proficient not only in genetics
and agronomy but also in statistics, programming and machine learning.
Educational programs should integrate computational biology,
bioinformatics and data science courses. Interdisciplinary training will
empower breeders to design experiments, manage data and interpret Al
outputs. Collaborative networks and workshops can facilitate knowledge
exchange and bridge the gap between breeders and data scientists [22].
6.4 Integrated Breeding Platforms and Collaborative Networks
Integrated breeding platforms that combine genotypic, phenotypic,
environmental and management data, along with Al analytical tools, will
streamline breeding workflows. Centralised databases enable real-time data
sharing and collaborative analysis across institutions. Breeders should
leverage cloud-based infrastructure to scale their analyses and share insights
with global partners. Citizen science and participatory breeding programs
can contribute phenotypic data and improve model generalisation [24].
6.5 Synergy with Gene Editing and Synthetic Biology
Al-guided multi-omics analysis can identify causal genes and regulatory
networks that can be targeted by genome editing tools like CRISPR/Cas.
Combining genomic selection, multi-omics integration and gene editing
allows breeders to design and introduce beneficial alleles with precision,
accelerating the development of climate-resilient and nutrient-dense crops.
Synthetic biology may enable the construction of novel metabolic pathways
or regulatory circuits predicted by integrative models, although ethical and
regulatory frameworks will be needed[15, 25].

Future Pathways in Al-Driven Plant Breeding
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7. Conclusion

Integrating Al with multi-omics data ushers in a new era of plant breeding.
Multi-omics technologies capture the complexity of plant biology, and Al
algorithms can distil this complexity into actionable insights. Evidence from
recent studies shows that combining genomic, transcriptomic, proteomic,
metabolomic and phenomic data with ML and deep learning improves
prediction accuracy for stress tolerance, disease resistance, yield and quality
traits. Random-forest and support-vector-machine models have already
enhanced trait prediction in potato, maize, rice and legumes. However,
challenges remain in data integration, computational resources,
interpretability and ethical considerations. Overcoming these barriers will
require robust algorithms, standardised data, investment in infrastructure
and multidisciplinary training. From a breeder’s perspective, the integration
of Al and multi-omics data holds immense promise to accelerate genetic
gains, adapt crops to changing environments and secure global food supply.
Adoption of these technologies, coupled with responsible governance and
collaboration, will transform plant breeding from selection to intelligent
design.
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