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ABSTRACT 
 

The growing demand for resilient crops, climate change and the availability of high-throughput sequencing and sensor technologies have 

created an unprecedented opportunity for data-driven crop improvement. Multi-omics technologies (genomics, transcriptomics, 

proteomics, metabolomics, epigenomics and phenomics) capture different layers of biological information, yet analysing each layer 

separately loses the holistic view of how these molecules collectively shape phenotype. Integrating these heterogeneous datasets with 

artificial intelligence (AI) can reveal complex gene-environment interactions and accelerate trait improvement. This review, written from 

a plant breeder’s perspective, summarizes the current state of AI-assisted multi-omics integration in plant genetics. We describe the omics 

landscape, discuss machine-learning algorithms and integrative frameworks, review applications in breeding (stress tolerance, disease 

resistance, yield and quality traits), and examine challenges such as data heterogeneity, model interpretability and equitable data sharing. 

Finally, we offer recommendations for the next generation of AI-enabled plant breeding programs. 
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Introduction 

Traditional plant breeding relies on phenotypic selection and, more recently, 

marker-assisted selection, which focus on single loci or simple traits. High-
throughput sequencing, mass-spectrometry and imaging technologies now 

produce petabytes of data representing the genome, transcriptome, 

proteome, metabolome and phenotype of plants. The combination of these 

so-called “multi-omics” datasets with AI and machine-learning (ML) 

algorithms promises to revolutionize plant breeding. AI models can uncover 

hidden patterns, model nonlinear relationships and predict phenotypes from 
multidimensional data better than traditional statistics. From a breeder’s 

point of view, integrating AI with multi-omics can shorten breeding cycles, 

increase prediction accuracy and provide insights into trait architecture that 
would be impossible to obtain through field selection alone [1]. 

2. Overview of Multi-Omics Technologies and Plant Genetics 

Multi-omics refers to the integrative study of several “omic” layers 
genomics, transcriptomics, proteomics, metabolomics, epigenomics and 

phenomics.  

2.1 Genomics and Pan-Genomics 
Genomics forms the foundation of plant breeding. Sequencing technologies 

now allow assembly of pan-genomes comprising hundreds of accessions, 

capturing core genes, dispensable genes and rare alleles that contribute to 
stress adaptation and yield. Pan-genomic approaches can reveal structural 

variants and presence–absence variation often missed by single reference 

genomes. High-density markers derived from sequencing are used in 

genomic selection and genome-wide association studies (GWAS), but their 

predictive power alone is limited for complex traits [2, 3].  
2.2 Transcriptomics 

Stress responses involve coordinated transcriptional programs. Single-cell 

RNA sequencing now allows exploration of cell-type-specific responses; 
ML algorithms such as SIMLR and neural networks enable clustering, 

trajectory inference and integration of multimodal data [4]. Integrating 

transcriptomic data with genomic markers improves prediction accuracy for 
traits like yield or stress tolerance, as shown in maize and rice genomic-

selection models [5]. 

2.3 Proteomics and Metabolomics 
Metabolomics quantifies metabolites reflecting biochemical pathways. 

Multi-omics studies show that integrating proteomic and metabolomic data 

with genomic markers enhances trait prediction. 
2.4 Multi-Omics Integration Strategies 

Horizontal integration merges datasets of the same omics type collected 

under diverse conditions or populations to increase robustness. Vertical 
integration combines different omics layers measured in the same samples 

to elucidate molecular cascades [6]. Multi-Omics toolbox (MOTBX) and 

Omics Fusion provide user-friendly platforms for breeders to combine 
omics layers and visualise results [7, 8]. 

 
Figure 1: Conceptual framework for AI-driven multi-omics integration in plant genetics 

3. Artificial Intelligence in Plant Genetics and Breeding 
Gene discovery: Integrating multi-omics data with ML improves the 

mapping of causal genes. Population-scale multi-omics analyses treat 

transcripts, proteins and metabolites as molecular traits (mTraits) and high-
throughput phenotypic features as imaging traits (iTraits). Dimensionality-

reduction algorithms (e.g., non-negative matrix factorization) and clustering 

(e.g., DBSCAN) are used to create “pseudo-genotype” indices that 
summarise genomic variation and relate it to mTraits. These strategies 

enhance GWAS resolution and help fine-map alleles affecting complex 

traits [9]. 
Genotype-to-phenotype prediction: Genomic selection models use high-

density markers to predict breeding values, but their accuracy suffers when 

traits have low heritability or strong G×E interactions. ML methods can 
model nonlinear relationships and integrate multiple data types. For 

example, integrating SNP genotypes with transcriptomic markers using 

random forests improved drought-tolerance prediction in maize (predictive 
R² = 0.72). In legumes, combining genomic, epigenomic, proteomic and 

metabolomic data with ML captured nonlinear relationships better than 

linear models and improved disease-resistance predictions. Automated 
feature selection using algorithms like Light Gradient Boosting Machine 

(LightGBM) can identify trait-associated SNPs consistent with GWAS 

peaks [10, 11]. 
Phenotyping and stress detection: Computer vision coupled with deep 

learning accurately classifies stress symptoms from images, quantifies leaf 

area and estimates biomass. Support-vector machines and neural networks 

have identified drought- and salt-resistance genes in Arabidopsis, maize and 

rice. AI also assists in reconstructing gene regulatory networks from time-

series expression data and predicting long non-coding RNAs associated 
with abiotic stress [12, 13]. 

4. Integrating Multi-Omics Data and AI 

4.1 Data Integration Frameworks 
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Successful integration requires careful preprocessing normalisation, batch 
correction and feature selection to handle different scales and missing data. 

Graph-based approaches build networks linking genes, metabolites and 

proteins; network inference algorithms such as iDREM use hidden Markov 
models to reconstruct dynamic regulatory events from time-series multi-

omics data. Modern integrative frameworks combine these methods with 

AI to address high dimensionality, heterogeneity and nonlinearity [14, 15]. 
4.2 AI Algorithms for Multi-Omics Integration 

Random forest (RF): RF is an ensemble of decision trees well suited for 

high-dimensional multi-omics data because it can model nonlinear 
interactions and does not require normally distributed features. RF models 

integrating genomic, transcriptomic and metabolomic data have predicted 

potato quality traits and stress tolerance in maize. 
Support-vector machines (SVM): SVM algorithms classify complex 

patterns by maximizing the margin between classes. Variants of SVM have 

been used to identify genes associated with drought and salt resistance and 
to classify abiotic vs. biotic stress responses in rice. Kernel functions allow 

SVM to model nonlinear relationships in multi-omics data [16]. 

Dimensionality-reduction (DR) techniques: Principal component 

analysis (PCA), non-negative matrix factorization (NMF), t-distributed 

stochastic neighbour embedding (t-SNE) and Uniform Manifold 

Approximation and Projection (UMAP) reduce dimensionality and 
visualise high-dimensional data. For example, the Multi-Omics Data 

Association Studies (MODAS) toolbox uses NMF and clustering to 

summarise millions of SNPs into thousands of genomic blocks. These 
methods alleviate the “curse of dimensionality” and facilitate integrative 

analysis [17]. 

4.3 Tools and Platforms 
An expanding ecosystem of software supports AI-based multi-omics 

integration. mixOmics and its DIABLO module implement supervised and 

unsupervised multivariate analyses and produce relevance networks. 
MOFA and MOFA+ use matrix factorisation to identify latent factors 

driving variation across omics layers, allowing missing data. iOmicsPASS 

combines multi-omics data with phenotype information to prioritise 
biomarkers and modules. MOTBX, Omics Fusion and other cloud-based 

platforms offer breeders user-friendly interfaces to integrate data and 

visualise results. These tools typically incorporate ML algorithms and are 
essential for non-expert breeders to exploit multi-omics data [6]. 

5. Applications in Plant Breeding 

5.1 Stress and Disease Resistance 
Abiotic stresses such as drought, heat and salinity threaten crop yields. AI-

assisted multi-omics techniques have been used to identify stress-response 

genes and biomarkers. Integrating genomics, transcriptomics and 
metabolomics with ML allows accurate prediction of stress tolerance and 

rapid identification of candidate genes. In legumes, combining genomic, 

transcriptomic, epigenomic, proteomic and metabolomic data with ML 
improved predictions of disease resistance and has the potential to shorten 

breeding cycles [18]. 

5.2 Yield and Quality Traits 
Yield and quality traits (e.g., seed size, nutrient content, tuber texture) are 

polygenic and influenced by environment. Integrating multi-omics layers 
enhances predictive accuracy for such traits. In potato, a random-forest 

model combining genomic, transcriptomic, proteomic and metabolomic 

data predicted tuber flesh colour, shape and enzymatic discolouration better 
than single-omics models. In maize and rice, integrating transcriptomic 

markers with genomic data improved yield predictions. Multi-omics data 

also enable mapping of metabolic pathways controlling nutritional traits. 
For example, multi-omics approaches identified candidate genes for kernel 

size in maize and oat nutritional traits through combined proteomic and 

metabolomic QTL analysis [19, 20]. 
5.3 Genotype-by-Environment Interactions and Climate Resilience 

Climate change intensifies abiotic and biotic stresses, necessitating crops 

resilient to variable environments. Multi-omics integration coupled with 
predictive modelling can capture G×E interactions by incorporating 

environmental covariates and digital phenotyping. Integrating multi-omics 

technologies (genomics, transcriptomics, proteomics, metabolomics, 
phenomics) with machine learning and deep learning has revolutionised our 

understanding of plant stress networks and enables accurate genotype-to-

phenotype predictions [21].  
6. Future Perspectives and Recommendations 

6.1 Developing Robust AI Models and Expanding Training Datasets 

Future models must handle heterogeneous, high-dimensional data, integrate 
prior biological knowledge and deliver interpretable outputs. Ensemble 

methods, graph neural networks and transfer learning can improve 

prediction robustness. Federated learning may allow sharing model 
parameters without exposing data, addressing privacy concerns. Collecting 

diverse multi-omics datasets across environments and breeding populations 

will improve model generalisation and capture G×E interactions. 
Collaboration between breeders, computational biologists and data 

scientists is crucial [22]. 

6.2 Enhancing Multi-Omics Data Quality and Standardization 
Standardised protocols for sampling, sequencing and data processing are 

needed to ensure comparability across studies. FAIR data repositories, 

integrated omics databases and metadata standards should be adopted. 
Platforms like MOTBX and Omics Fusion should incorporate quality-

control pipelines and promote reproducibility. Investment in high-

throughput phenotyping infrastructure will generate consistent iTraits, 
enabling integration with molecular data [23]. 

6.3 Training Plant Breeders in Data Science and AI 

The next generation of plant breeders must be proficient not only in genetics 
and agronomy but also in statistics, programming and machine learning. 

Educational programs should integrate computational biology, 

bioinformatics and data science courses. Interdisciplinary training will 
empower breeders to design experiments, manage data and interpret AI 

outputs. Collaborative networks and workshops can facilitate knowledge 

exchange and bridge the gap between breeders and data scientists [22]. 

6.4 Integrated Breeding Platforms and Collaborative Networks 

Integrated breeding platforms that combine genotypic, phenotypic, 

environmental and management data, along with AI analytical tools, will 
streamline breeding workflows. Centralised databases enable real-time data 

sharing and collaborative analysis across institutions. Breeders should 

leverage cloud-based infrastructure to scale their analyses and share insights 
with global partners. Citizen science and participatory breeding programs 

can contribute phenotypic data and improve model generalisation [24]. 

6.5 Synergy with Gene Editing and Synthetic Biology 
AI-guided multi-omics analysis can identify causal genes and regulatory 

networks that can be targeted by genome editing tools like CRISPR/Cas. 

Combining genomic selection, multi-omics integration and gene editing 
allows breeders to design and introduce beneficial alleles with precision, 

accelerating the development of climate-resilient and nutrient-dense crops. 

Synthetic biology may enable the construction of novel metabolic pathways 
or regulatory circuits predicted by integrative models, although ethical and 

regulatory frameworks will be needed[15, 25]. 

 
7. Conclusion 
Integrating AI with multi-omics data ushers in a new era of plant breeding. 

Multi-omics technologies capture the complexity of plant biology, and AI 

algorithms can distil this complexity into actionable insights. Evidence from 
recent studies shows that combining genomic, transcriptomic, proteomic, 

metabolomic and phenomic data with ML and deep learning improves 

prediction accuracy for stress tolerance, disease resistance, yield and quality 
traits. Random-forest and support-vector-machine models have already 

enhanced trait prediction in potato, maize, rice and legumes. However, 

challenges remain in data integration, computational resources, 
interpretability and ethical considerations. Overcoming these barriers will 

require robust algorithms, standardised data, investment in infrastructure 

and multidisciplinary training. From a breeder’s perspective, the integration 
of AI and multi-omics data holds immense promise to accelerate genetic 

gains, adapt crops to changing environments and secure global food supply. 
Adoption of these technologies, coupled with responsible governance and 

collaboration, will transform plant breeding from selection to intelligent 

design. 
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