

From Gene Discovery to Marketed Variety: Navigating the Commercialization Pipeline in Modern Plant Breeding

Muhammad Ahad*, Ali Murtaza, Ayaz Haider, Abdullah Bin Abid and Hafsa

Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan

*Corresponding Author: muhammadahad7396@gmail.com

ABSTRACT

Commercialization of modern plant breeding, including discovery of a gene through to a commercially viable crop line is an integrated and complicated process that integrates both sophisticated scientific innovation and enormous regulatory, economic, and social issues. It starts with the discovery of the candidate genes based on genomic resources and multiomics data, and then the development of precise traits based on such methods as transgenesis, CRISPRCas9 gene editing, and marker assisted selection. Doubled haploids and high throughput phenotyping are some of the key technologies that hasten breeding cycles. Nevertheless, commercialization is severely limited by crowded intellectual property rights, expensive and incompatible international regulatory systems particularly between genetically modified and gene-edited products as well as the absolute necessity of social acceptance.

Keywords: Multi-omics Integration, Doubled Haploids, Trait Stacking, Freedom to Operate (FTO), GMO vs. Gene-Edited Crops

To cite this article: Ahad M, A Murtaza, A Haider, AB Abid & Hafsa. From Gene Discovery to Marketed Variety: Navigating the Commercialization Pipeline in Modern Plant Breeding. Biological Times. 2025. December 4(12): 42-43.

Introduction

The path of the discovery to the introduction of a crop variety on the market can be described as complex and has many stages that are filled with the combination of the most advanced scientific breakthroughs and thorough evaluation procedures of regulatory, economic, and social policies. It is the development of genomics, bioinformatics, and biotechnology which has fundamentally changed modern plant breeding. The first stage entails utilization of high-quality reference genomes and pan-genomes to detect genetic variants including SNPs based on which phenotypic variation occurs [1-3]. In conjunction with the multi-omics data integration and analysis techniques, including Genome-Wide Association Studies (GWAS) and Quantitative Trait Loci (QTL) mapping, this genomic infrastructure allows identifying candidate genes of complex traits with high precision [2, 4].

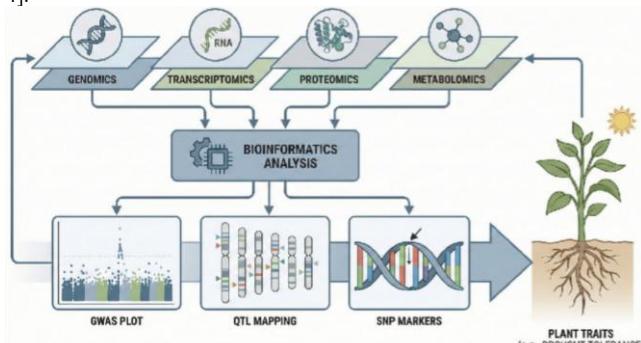


Figure 1: Schematic representation of gene discovery in modern plant breeding, illustrating the integration of genomics and multi-omics data with GWAS and QTL mapping to link genetic variation to phenotypic traits. The further evolution employs an advanced toolbox starting with classical transgenesis, which is still a common technique of implanting new qualities, up to new technologies of precision such as CRISPR Cas9 gene editing and marker-assisted selection[5-7]. These methods enable the quick development of superior breeding lines with compounded traits to withstand climatic conditions and enhanced quality, methods such as doubled haploids and high-throughput phenotyping expedite breeding duration to a considerable extent[1, 3, 8].

Nevertheless, the road linking the laboratory to the market is characterized by challenges that are non-technical in nature and are very challenging. It is essential to find a way out of complex intellectual property (IP) landscape issues, such as patent thickets and licensing[9, 10]. At the same time, disparate and expensive regulatory frameworks and especially global regulatory frameworks between genetically modified and gene-edited crops are barriers to commercialization that are hard to overcome[5, 11]. After all, a turn of technological effectiveness does not necessarily mean a turn of commercial success; it should be accompanied by strategic market placement, the social acceptance, and the conformity to economic realities with high turnover rates and strict cost benefit arguments. This report

investigates the combined technology chain of gene discovery to high-tech breeding lines, the following regulatory and commercial processes, and the last issues of market implementation and integration into society[11-14].

The Integrated Technology Pipeline: Commercial Discovery to Superior Breeding Lines

The initial step in the modern breeding is based on the production of exact genetic maps and resources. High quality reference genomes and pan genomes made possible by the sequencing technology are essential in the determination of genetic variants such as SNPs that contribute to phenotypic variation[1-3]. Data mining and a candidate gene identification are supported using this genomic infrastructure. Multi omics data (genomics, transcriptomics, proteomics, metabolomics) require bioinformatics tools and platforms that can be used to establish genotype to phenotype connections. Genome Wide Association Studies (GWAS) and

Quantitative Trait Loci (QTL) mapping are analytical techniques that are used to identify candidate genes of complex traits[2-4].

After identifying the candidate genes, the pipeline continues to precision development to initiate functional validation followed by integration of the gene into the trait. Classical and new techniques are in development toolbox. Classical transgenesis (gene transfer) is still a powerful method of transferring new characteristics, with 75 percent of newer plant biotechnology patents being based on this method and it is commonly applied in traits such as insect resistance[5]. However, gene editing technologies, e.g. CRISPR-Cas9, have become strong alternatives, as specific alterations, e.g. knock-outs or allelic changes can be performed to create certain traits like drought resistance or enhanced quality[5-7].

This breeding-by-editing makes the production of varieties with complicated characteristics such as climate resistance faster and cheaper and is essential to concepts such as *de novo* domestication[9, 15]. This can be done with the help of the tools that allow making varieties of stacks that have several positive qualities that are essential in stress management[9]. Breeders can also use Marker-Assisted Selection (MAS) or Genomic Selection (GS) to make rapid and accurate selections on desired genes or anticipate the performance of complex traits, which is a significant reduction in breeding times [7, 8].

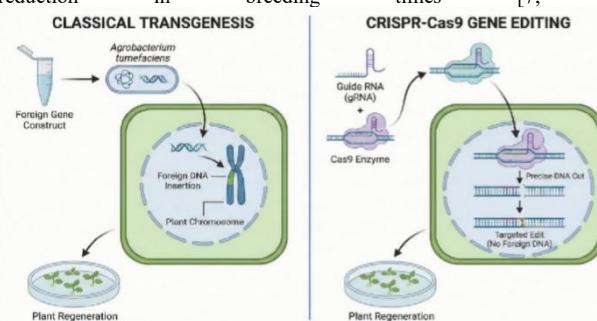


Figure 2: Comparative illustration of precision trait development technologies, highlighting differences between classical transgenesis involving foreign gene insertion and CRISPR-Cas9-based gene editing enabling precise, targeted modifications without foreign DNA

Managing the Regulatory and Commercial Process

Since advanced breeding lines are leaving the technology pipeline, they face a complicated non-technical environment which may also become a big bottleneck. One of these is intellectual property (IP) navigating. Inventions are safeguarded by IPR, including utility patents, Plant breeder's rights (Plant Variety Protection Act or UPOV) and trade secrets, which allow the holder to recover investment [10, 16, 17]. Patents have brought about the huge investment needed in commercialization by the individuals [11]. The landscape however is becoming more and more complex. New breeding technologies have introduced dense webs of overlapping patents, called patent thickets, especially with the new technology of CRISPR/Cas, which are difficult to commercialize [9]. Moreover, one type can contain a stack of many patented characteristics, and it can be hard to negotiate a license agreement to have Freedom to Operate [9]. The proliferation of such rights has taken away control over the seeds, usually limiting the farmers to their traditional ways of operation and making it difficult to access genetic materials [10]. Moreover, AI undermines the innovation approaches to the traditional IP models, posing some unanswered questions regarding the authorship, ownership, and inventorship [18]. In order to overcome these obstacles, open innovation strategies are being considered which include patent clearinghouses, patent pools and open-source licensing promises that are meant to maintain germplasm accessibility and promote innovation [9]. At the same time, the regulatory phase introduces a daunting challenge, estimated between \$35 and 70 million of the approximate 70 per cent of the total cost of the R&D process of a successful trait because of the massive data and filing demands [11]. The regulatory uncertainty can be a significant cost source, because regulations can vary across the world. The example of the US is that it has enabled innovation via its policy of non-regulated status of some gene-edited crops compared to the more restrictive, process-based regulations in the EU [5]. This non-technical division is a major barrier and the position of CRISPR-edited crops is unclear in most areas [6]. One of the most important issues that regulators and innovators should consider is to draw the line between Genetically Modified Organisms (GMOs) and gene-edited crops since the latter are generally much more acceptable in the general population because of the absence of foreign DNA. To successfully sail through this stage, based on thorough safety tests, environmental risk analysis, and holding divergent global standards, a product has to be finally advanced to seed production and scaling [5, 13].

Market Deployment, Societal Integration and Economic Realities

The successful entry into the market and acceptance by the society is a strong form of selective pressure and the success of a business depends on it. The value of a product should be corresponding to the willingness to pay of downstream users, farmers with respect to input qualities such as pest control or output qualities such as nutritional value [11]. This includes product specifications that focus on addressing individual product attributes like stability in yield, reduction in inputs or high quality and customization to meet the needs of a particular market segment [13, 19]. The breeders are faced with a dilemma between creating generically versatile types and satisfying the local farming systems [13]. Knowledge about end-user needs is essential because consumption is a complex issue based on such factors as social status and symbolism rather than on fundamental needs [19]. Moreover, the varieties that should be successful must fit certain culinary or processing criteria and comply with more general social objectives, including women and smallholder farmers [13, 20].

The harsh economic reality controls the whole pipeline, as it is characterized by the funnel with high attrition rates. Breeding is a commercial process in which programs are required to carefully budget each process to achieve as much genetic gain per dollar expended as possible, which may be informed by models such as the "breeder equation" [12]. The pipeline is defined by the production of thousands of genotypes, most of which do not make it to the market and rigid stage-gate decision-making is required to eliminate poor lines in their early phases [3, 12]. One such analysis showed that, out of 560 innovation candidates to product quality traits, there was a survey of commercialized 5 and market existing 2 [11]. The cost-benefit analysis of having to bear high costs of R&D and regulation against uncertain future

profits is used to make decisions to go ahead with a product, usually measured in terms of the expected Net Present Value (NPV) [11]. Another issue is that economic indicators and funding schemes are usually inclined to prioritize industrial staples, which have a higher gross, which may leave various agrobiodiversity in the background and strengthen the status quo [10].

Conclusion

The path to commercial success of a crop type is a multifaceted process, which involves the scientific breakthrough but much more. The current breeding of plants uses modern genomic technology, multi-omics integration, and accuracy such as CRISPR-Cas9 to expedite the process of creating robust and high-yielding crops. However, it does not take technological advancement to commercialize. It is greatly limited by the dense intellectual property environment, expensive and divergent global regulatory footprints, and the imperative necessity to be accepted into the society. Complexities in intellectual property such as patent thickets and licensing barriers should be avoided to allow freedom of operation whereas regulation barriers especially to gene-edited versus genetically modified crops require serious investment and planning. Finally, commercial success will be based on the ability to match the value proposition of the product to the needs of the market, high rates of attrition due to the use of strict economic analysis, and the ability to communicate with consumers and stakeholders in an open way. It is the combination of technological prowess along with a careful consideration of regulatory, economic, and social conditions that determine the current breeding pipeline as a dynamic interaction between innovation and the reality of a safe and efficient process of conducting a crop from the laboratory to the field and ultimately to the marketplace.

References

- [1] Biswas, D. and P. Sharma, A combined method of genomics and bioinformatics for plant breeding programs. *Agricultural Biotechnology Journal*, 2024. 16(3): p. 211-228.
- [2] Hu, H., A. Scheben, and D. Edwards, Advances in integrating genomics and bioinformatics in the plant breeding pipeline. *Agriculture*, 2018. 8(6): p. 75.
- [3] Yan, G., et al., Accelerated generation of selfed pure line plants for gene identification and crop breeding. *Frontiers in plant science*, 2017. 8: p. 1786.
- [4] Varshney, R.K. and A. Dubey, Novel genomic tools and modern genetic and breeding approaches for crop improvement. *Journal of Plant Biochemistry and Biotechnology*, 2009. 18(2): p. 127-138.
- [5] Ricroch, A.E., et al., Next biotechnological plants for addressing global challenges: The contribution of transgenesis and new breeding techniques. *New biotechnology*, 2022. 66: p. 25-35.
- [6] Ahmad, M., Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security. *Frontiers in plant science*, 2023. 14: p. 113036.
- [7] Buch, K., et al., Unravelling the complexity of plant breeding through modern genetic techniques and tools: A review. *International Journal of Plant & Soil Science*, 2023. 35(21): p. 97-105.
- [8] Yoosefzadeh-Najafabadi, M., Merging traditional practices and modern technology through computational plant breeding. *Plant Physiology*, 2025. 199(1): p. kiaf355.
- [9] Kock, M.A., Open intellectual property models for plant innovations in the context of new breeding technologies. *Agronomy*, 2021. 11(6): p. 1218.
- [10] Montenegro de Wit, M., Stealing into the wild: conservation science, plant breeding and the makings of new seed enclosures. *The Journal of Peasant Studies*, 2017. 44(1): p. 169-212.
- [11] Graff, G.D., D. Zilberman, and A.B. Bennett, The commercialization of biotechnology traits. *Plant science*, 2010. 179(6): p. 635-644.
- [12] Covarrubias-Pazaran, G., et al., Strengthening public breeding pipelines by emphasizing quantitative genetics principles and open source data management. *Frontiers in plant science*, 2021. 12: p. 681624.
- [13] Kholová, J., et al., In pursuit of a better world: crop improvement and the CGIAR. *Journal of Experimental Botany*, 2021. 72(14): p. 5158-5179.
- [14] Jain, S. and J. Shankar, *Landscape Analysis of Intellectual Property*. 2022.
- [15] Van Tassel, D.L., et al., New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. *Frontiers in Plant Science*, 2020. 11: p. 789.
- [16] Ahmadzai, A.S., et al., Exploring the journey of plant breeding from ancient traditional practices to modern advancements. *Journal of Crop Improvement*, 2024. 38(6): p. 688- 709.
- [17] Jan, M. and T. Jan, *Guardians of Knowledge: Exploring the Ethical Landscape of Research and Intellectual Property Rights*. *International Journal of Indian Psychology*, 2024. 12(3).
- [18] Mehrotra, A., Navigating the Intellectual Property Landscape in the Age of Artificial Intelligence: Towards a Global Legal Paradigm. *International Journal of Innovations in Science, Engineering And Management*, 2024: p. 253-258.
- [19] Guillen-Royo, M., Consumption and subjective wellbeing: Exploring basic needs, social comparison, social integration and hedonism in Peru. *Social Indicators Research*, 2008. 89(3): p. 535-555.
- [20] Parag, Y. and M. Ainspan, Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. *Energy for Sustainable Development*, 2019. 52: p. 72-81.