

Intestinal Parasites in Children: An Overview for a School/College-Level

Shameeran Salman Ismael^{1*}, Bland Husamuldeen Abdullah¹, Soleen Azad Sultan¹ and Amal Jameel Sadiq¹

Department of Medical Laboratory Sciences, College of Health Sciences/ University of Duhok, Duhok, Iraq

*Corresponding Author: shameeran.ismael@uod.ac

ABSTRACT

Intestinal parasitic infections remain a major public health problem in children, especially in low- and middle-income countries and deprived communities. Recent systematic reviews and large field studies show that roughly one-third to one-half of preschool and school-age children are infected with at least one intestinal parasite. The evidence supports integrated control strategies combining periodic deworming, water, sanitation and hygiene improvements, health and school-based education, and, where relevant, animal health measures to reduce transmission and protect child growth and development. This article aimed to know the prevalence of intestinal parasites among children globally.

Keywords: Children, Intestinal Parasites, Risk factors, Prevention

To cite this article: Ismael SS, BH Abdullah, SA Sultan & AJ Sadiq. Intestinal Parasites in Children: An Overview for a School/College-Level. Biological Times. 2026. January 5(1): 13-14.

Introduction

Intestinal parasites (IPIs) are organisms (worms and microscopic protozoa) that live in the gut and use the child's nutrients to survive. They are common in many low- and middle-income countries and remain a major public health problem in childhood [1,2, 3].

What are intestinal parasites?

There are two main groups affect children:

- Protozoa (microscopic single-celled organisms) – e.g., *Giardia duodenalis*, *Entamoeba histolytica*, *Cryptosporidium*, *Blastocystis* [4,5,6].
- Helminths (worms) – e.g., *Ascaris lumbricoides* (roundworm), *Trichuris trichiura* (whipworm), hookworms, *Enterobius vermicularis* (pinworm) [1,2].

These parasites spread mainly by the fecal–oral route: when eggs or cysts from feces contaminate water, soil, food, hands, or surfaces and are swallowed [7,8].

How common are they in children?

Studies from many regions show that intestinal parasitic infections (IPIs) are very frequent in preschool and school-age children:

- Ethiopia, meta-analysis: about 48% of children infected at least once [1].
- Egypt: 46.5% of apparently healthy children had at least one parasite [9].
- Ghana: pooled prevalence 22%, higher in rural regions [10].
- Turkey: pooled prevalence 29% in school-age children [2].
- Iran: 38% in preschool and school children, with a decreasing trend over time [11].
- Duhok, Iraq: 27.7% in school children-age 1-14 years [6].

In some rural or very poor areas, virtually all children may be infected (near 100% in rural Colombian schools; 97% in Nicaraguan children) [12, 13].

Health effects on children

Intestinal parasites can cause both acute illness and chronic, subtle damage:

- Digestive symptoms: diarrhea, abdominal pain, nausea, vomiting [6,13].
- Malnutrition and growth problems: wasting, stunting, low weight-for-age and height-for-age, and “failure to thrive” [14].
- Anemia and micronutrient deficiencies, partly due to blood loss and poor absorption [1].
- Poor cognitive and school performance: lower learning capacity and school achievement over time [1,6].
- In some studies, infected preschool children were much more likely to be wasted (severely underweight for height) than uninfected peers [6,13].

Even when children appear well, asymptomatic infections are common and contribute to ongoing transmission in communities [15,16].

Risk factors

Across settings, similar risk factors repeatedly appear:

- Unsafe water – use of untreated or unclean drinking water strongly increases risk [15,16].

- Poor sanitation – open defecation; latrines without septic tanks; contaminated play areas [1,17].
- Inadequate hygiene – not washing hands after defecation or before eating; long or dirty nails [11,3].
- Low socioeconomic status and crowded housing, including large family size and overcrowded slums [2,3,4].
- Rural residence and close contact with contaminated soil and roaming animals [15,16].
- Younger school age (about 6–10 years), when children are active, independent, and often unsupervised [1,3].

Intestinal parasites and the gut microbiome

Newer research shows that protozoan infections such as *Giardia* and *Entamoeba* can alter the bacterial gut microbiota, shifting the community composition and potentially affecting immunity and other diseases. Multiple parasite species tend to produce stronger changes in the microbiota than single infections [6,18].

Prevention and control

Evidence from many countries points to a combination of medical and environmental interventions:

Regular deworming of preschool and school-aged children, often every 6–12 months in high-burden areas [5,7].

Improved water, sanitation and hygiene (WASH):

- Safe, treated drinking water
- Functional latrines with septic systems
- Clean play areas, safe waste disposal [2,4].

Hygiene education for children and caregivers: handwashing with soap, washing vegetables, wearing shoes, nail trimming [6,18].

Targeting high-risk groups and regions, such as rural communities, slums, and very poor households [6,18].

Global trends

In some countries (for example Iran and Ethiopia), the overall prevalence of IPIs in children has declined over recent decades, likely due to better sanitation, health education, and deworming programs [10]. However, in many rural or marginalized communities, the burden remains high, underscoring the need for sustained, integrated control efforts [9].

Conclusion

Intestinal parasites in children are highly prevalent, strongly linked to poverty and poor hygiene, and can seriously harm growth and development, but are preventable with integrated public health measures.

References

- [1] Chelkeba, L., Mekonnen, Z., Alemu, Y., & Emana, D. Epidemiology of intestinal parasitic infections in preschool and school-aged Ethiopian children: a systematic review and meta-analysis. *BMC Public Health*. 2019; 20. <https://doi.org/10.1186/s12889-020-8222-y>.
- [2] Halidi, A., Yaran, K., Aydemir, S., Ekici, A., & Dilbilir, Y. Prevalence of intestinal parasites in school-age children in Turkey: A systematic review and meta-analysis. *PLOS Neglected Tropical Diseases*. 2025; 19. <https://doi.org/10.1371/journal.pntd.0013186>.
- [3] Ismael SS, Sadiq Barwary NJ, Ahmed BD, Ameen Marof KM, Khwasti SH, Lavu KO, Hassan KE, Ali HM. Prevalence of Scabies and its Related Risk Factors in Duhok City, Iraq. *Ain Shams Medical Journal*. 2025 Mar 1;76(1):230-6.
- [4] Hajissa, K., Islam, M., Sanyang, A., & Mohamed, Z. Prevalence of intestinal protozoan parasites among school children in africa: A systematic review and meta-analysis. *PLoS Neglected Tropical Diseases*. 2022; 16. <https://doi.org/10.1371/journal.pntd.0009971>.

[5] Azzam, A., & Khaled, H. Prevalence and risk factors of intestinal parasitic infections among preschool and school-aged children in Egypt: a systematic review and meta-analysis. *BMC Public Health.* 2025; 25. <https://doi.org/10.1186/s12889-025-23325-8>.

[6] Ismael SS, Abdullah BH, Sadiq AJ, Ajaj JS, Ali NS, Omer DM, Nori NY. Prevalence of intestinal protozoan parasites among children attending the Hevi Pediatric Hospital in Duhok Province, Kurdistan Region, Iraq. *Archives of Razi Institute.* 2024 Jun 30;79(3):507.

[7] Mekonnen, H., & Ekubagewargies, D. Prevalence and factors associated with intestinal parasites among under-five children attending Woreta Health Center, Northwest Ethiopia. *BMC Infectious Diseases.* 2019; 19. <https://doi.org/10.1186/s12879-019-3884-8>.

[8] Azzam, A., & Khaled, H. Prevalence and risk factors of intestinal parasitic infections among preschool and school-aged children in Egypt: a systematic review and meta-analysis. *BMC Public Health.* 2025; 25. <https://doi.org/10.1186/s12889-025-23325-8>.

[9] Ablordey, K., Kwadzokpui, P., Jibrim, M., Bedzina, I., Kwabena, B., Abaka-Yawson, A., & Duneh, R. Hidden in the gut: burden and regional variations of intestinal parasitic infections among Ghanaian children- systematic review and meta-analysis. *BMC Infectious Diseases.* 2025; 25. <https://doi.org/10.1186/s12879-025-11939-7>.

[10] Daryani, A., Hosseini-Teshnizi, S., Hosseini, S., Ahmadpour, E., Sarvi, S., Amouei, A., Mizani, A., Gholami, S., & Sharif, M. Intestinal parasitic infections in Iranian preschool and school children: A systematic review and meta-analysis. *Acta tropica.* 2017; 169. <https://doi.org/10.1016/j.actatropica.2017.01.019>.

[11] Hernández, P., Morales, L., Chaparro-Olaya, J., Sarmiento, D., Jaramillo, J., Ordoñez-Sierra, G., Cortés, F., & Sánchez, L. Intestinal parasitic infections and associated factors in children of three rural schools in Colombia. A cross-sectional study. *PLoS ONE.* 2019; 14. <https://doi.org/10.1371/journal.pone.0218681>.

[12] Muñoz-Antolí, C., Pérez, P., Pavón, A., Toledo, R., & Esteban, J. High intestinal parasite infection detected in children from Región Autónoma Atlántico Norte (R.A.A.N.) of Nicaragua. *Scientific Reports.* 2022; 12. <https://doi.org/10.1038/s41598-022-09756-y>.

[13] Aiemjoy, K., Gebresillasie, S., Stoller, N., Shiferaw, A., Tadesse, Z., Chanyalew, M., Aragie, S., Callahan, K., & Keenan, J. (2017). Epidemiology of Soil-Transmitted Helminth and Intestinal Protozoan Infections in Preschool-Aged Children in the Amhara Region of Ethiopia. *The American journal of tropical medicine and hygiene,* 96 4, 866-872. <https://doi.org/10.4299/ajtmh.16-0800>.

[14] Oyegue-Liabagu, S., Ndjangangoye, N., Kouna, L., Lekolo, G., Mounioko, F., Nolna, S., & Lekana-Douki, J. Molecular prevalence of intestinal parasites infections in children with diarrhea in Franceville, Southeast of Gabon. *BMC Infectious Diseases.* 2020; 20. <https://doi.org/10.1186/s12879-020-05071-x>.

[15] Osman, M., Safadi, D., Cian, A., Benamrouz, S., Nourrisson, C., Poirier, P., Pereira, B., Razakandrainibe, R., Pinon, A., Lambert, C., Wawrzyniak, J., Dabboussi, F., Delbac, F., Favenne, L., Hamzé, M., Viscogliosi, E., & Certad, G. (2016). Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon. *PLoS Neglected Tropical Diseases,* 10. <https://doi.org/10.1371/journal.pntd.0004496>.

[16] Sajid MS, Rizwan HM, editors. *Omics Approaches in Veterinary Parasitology: Diagnosis, Biomarkers, and Drug Development.* CRC Press; 2024 Nov 28.

[17] Athiyyah, A., Surono, I., Ranuh, R., Darma, A., Basuki, S., Rossyanti, L., Sudarmo, S., & Venema, K. Mono-Parasitic and Poly-Parasitic Intestinal Infections among Children Aged 36-45 Months in East Nusa Tenggara, Indonesia. *Tropical Medicine and Infectious Disease.* 2023; 8. <https://doi.org/10.3390/tropicalmed8010045>.

[18] Toro-Londono, M., Bedoya-Urrego, K., García-Montoya, G., Galván-Díaz, A., & Alzate, J. Intestinal parasitic infection alters bacterial gut microbiota in children. *PeerJ.* 2019; 7. <https://doi.org/10.7717/peerj.6200>.